
Community Detection and Observation
in Large-scale Transaction-based

Networks
by

Dalwar Hossain

Matriculation Number: 387610

A thesis submitted to

Technische Universität Berlin
School IV - Electrical Engineering and Computer Science

Department of Telecommunication Systems
Service-centric Networking

Master Thesis

September 17, 2018

Supervised by:
Prof. Dr. Axel Küpper

Assistant supervisor:
Dr. Peter Ruppel

Bianca Lüders

Eidestattliche Erklärung / Statutory Declaration

Hiermit versichere ich, dass ich diese Arbeit selbstständig verfasst und keine anderen als die
angegebenen Quellen und Hilfsmittel benutzt habe.

I hereby declare that I have created this work completely on my own and used no other sources
or tools than the ones listed.

Berlin, September 17, 2018 Dalwar Hossain

iii

Abstract
Understanding community structures in a graph give an insight into the fundamental prop-
erties of a network by observing the characteristics and relationship between the nodes. This
thesis will explore the state of the art community detection algorithms for large-scale networks
preferably in blockchain/distributed ledger domain. As the popularity for both community
detection and blockchain grows, research interest in respective domain grows simultaneously.
Detecting community in the large-scale network is challenging because of time and space com-
plexity of the underlying algorithm and to observe the change in the network requires addi-
tional approaches. This thesis proposes a prototypical framework for detecting community
structures in blockchain data and observing changes in communities afterward. All the imple-
mentation steps of the framework are clearly defined. It evaluates the framework with respect
to time and space complexity with different well-known community detection algorithms. It
also proposes additional steps to observe changes in the community at any given time-stamp.
This framework can be easily modified to suit the need of observing changes in any blockchain
network. Significant improvement of this prototypical framework can be done in processing
time-stamped data-sets by using high-end systems, parallel or distributed computing.

v

Zusammenfassung
Das Verstehen von Gemeinschaftsstrukturen in einem Diagramm gibt einen Einblick in die
grundlegenden Eigenschaften eines Netzwerks, indem die Eigenschaften und die Beziehung
zwischen den Knoten beobachtet werden. Diese Dissertation wird die state of the art Commu-
nity erkennungs algorithmen für große Netzwerke untersuchen, vorzugsweise im Blockchain
/ Distributed-Ledger-Bereich. Mit der wachsenden Beliebtheit von Community Detection und
Blockchain wächst das Interesse an der jeweiligen Domain gleichzeitig. Das Erkennen von
Communities in großen Netzwerken ist aufgrund der Komplexität von Zeit und Raum des
zugrunde liegenden Algorithmus eine Herausforderung, und um Änderungen im Netzwerk
zu beobachten, sind zusätzliche Ansätze erforderlich. Diese Arbeit schlägt einen prototypis-
chen Rahmen vor, um Community-Strukturen in Blockchain-Daten aufzuspüren und danach
Veränderungen in Communities zu beobachten. Alle Umsetzungsschritte des Rahmens sind
klar definiert. Es bewertet das Framework in Bezug auf Zeit- und Raumkomplexität mit ver-
schiedenen bekannten Community-Erkennungsalgorithmen. Es werden außerdem zusätzliche
Schritte zum Beobachten von Änderungen in der Community zu einem bestimmten Zeitstem-
pel vorgeschlagen. Dieses Framework kann leicht modifiziert werden, um Änderungen in
einem Blockchain-Netzwerk zu beobachten. Eine signifikante Verbesserung dieses prototypis-
chen Frameworks kann bei der Verarbeitung von Zeitstempeldatensätzen unter Verwendung
von High-End-Systemen, paralleler oder verteilter Datenverarbeitung erreicht werden.

vii

Contents
1 Introduction 1

1.1 Objectives . 1
1.2 What is a community in graph? . 2
1.3 Structure of Transaction-based Networks . 5

1.3.1 Transaction Networks . 5
1.4 Distributed Ledger / Blockchain . 5

1.4.1 Why Blockchain? . 6
1.5 Community Detection in Transaction-based Networks 7

1.5.1 Detection of Dynamic Community . 7

2 Related Work 9
2.1 Problems of community detection . 9
2.2 Literature Review . 10

2.2.1 Infomap . 11
2.2.2 Louvain Method . 11
2.2.3 Girvan-Newman Algorithm . 12
2.2.4 Modularity Maximization (Quality Function) 12

2.3 Background . 13
2.3.1 Infomap Algorithms . 13
2.3.2 Louvain Method Algorithm Structure . 16
2.3.3 Girvan-Newman Algorithm Architecture 22
2.3.4 Modularity Maximization Technique . 25
2.3.5 Hierarchical Clustering . 28

2.4 Dynamic Community Detection Algorithms . 30

3 Concept and Design 33
3.1 Proposed Framework Architecture . 33

4 Implementation and Evaluation 37
4.1 Implementation . 37
4.2 Evaluation . 41

4.2.1 Infomap . 41
4.2.2 Louvain . 43
4.2.3 Fast Greedy(Clauset-Newman-Moore) . 45

4.3 Algorithm Comparison . 47
4.4 Evaluation of Observation Framework . 48

5 Conclusion 51

ix

x Contents

List of Tables 53

List of Figures 55

Bibliography 57

1 Introduction
Recent development in networking has changed the way we think about complex systems.
Researchers have concentrated their attention on a few properties that seem to be common in
many real-life networks: the small-world property, power-law degree distributions and net-
work transitivity [1]. One of the very challenging aspects of graphs in representing a real sys-
tem is community structure. Recently, there is a growth in networks out of financial/asset
transfer domains. These networks usually represent the business relationship between compa-
nies/agents. As a result, the graphs contain multiple edges between two same nodes as well
as time stamps for each edge [2]. Analyzing the structure of a network allows us to better un-
derstand its fundamental properties by observing the characteristics and relationships between
the vertices and edges of the corresponding graph. There is a growing number of distributed
ledger/Blockchain-based networks that encompass the whole world and whose transaction
lists are publicly accessible. Detecting community structures in massive graphs is challenging
because of time and space complexity of the involved algorithms. In addition, previously iden-
tified community might change over time and might have added new transactions. Additional
observation technique like birth, growth, splitting and death of communities are required to
track and observe these dynamic communities [3].

1.1 Objectives

Finding community structures in massive networks is a growing and developing subject. The
goal of this thesis is to design and develop a concept of a prototypical framework and imple-
mentation for detecting community structures and afterward observing changes in communi-
ties. The main focus of the thesis is on two complexity factors, run-time and memory manage-
ment. The whole process revolves around the question "How well an approach performs on
large-scale graphs?". To achieve the primary goal the following objectives had been set -

• Provide an overview of state of the art community detection and observation in graphs.

• Conduct analysis of data sources, data types, and data concepts, preferably in the domain
of Distributed Ledgers/Blockchain.

• Design a framework that can perform community detection and observation in large-
scale transaction-based networks.

• Implement a prototype of the framework.

• Evaluate the performance (run-time and memory space requirements) of the framework.1

1 Sample Ethereum data provided by SNET TU Berlin (http://www.snet.tu-berlin.de)

1

2 Chapter 1. Introduction

This thesis focuses on the notion of community structures in blockchain network. It explores
the idea that community structures exist in blockchain networks. Those community structures
can be detected and monitored over time to observe the evolution of the network. For this
purpose, a couple of community detection algorithm that can detect community structures in
large-scale networks is tested against blockchain transaction data to determine the run-time
and memory requirements. In the first chapter of this thesis, a brief introduction about com-
munities, dynamic communities, community life-cycle, blockchain, why choosing blockchain
for this thesis has been discussed. In the second chapter, an elaborate background study is
discussed focusing on community detection techniques and their run-time and memory con-
sumption. Also, the algorithms were explained in a fair manner later in chapter two. In chapter
three of this thesis a prototypical framework for community structure detection and observa-
tion in large-scale network has been proposed and explained step by step. Implementation
techniques and measures that have been used to test the run-time and memory consumption
of the algorithms in the framework has been described in brief in chapter four. Chapter four
also contains the evaluation, results and finding of the implementation. This thesis concludes
with a few recommendations about future work that can be done in the field of blockchain with
community detection and observation.

1.2 What is a community in graph?

Communities are groups of vertices which can easily be grouped together into set of nodes
such that each set of node is densely connected internally and/or play similar roles within the
graph [4]. Figure (1.1) is an example of a sample graph that has three communities. Graphs
representing real systems are not regular. They are objects where order coexists with disorder.
The paradigm of disordered graph is the random graph [5]. Real networks are not random
graphs as the display big level of inhomogeneities, high level of order and organization. In
real networks, the degree distribution is broad which most of the time follows power law [4].
As a result, many vertices with low degree coexists with some vertices with large degrees.
Hence, the distribution of edges is not only globally but also locally inhomogeneous with high
concentrations of edges within a special group of vertices and low concentration between these
groups. This feature of real networks is called community structure [1].

1.2. What is a community in graph? 3

Figure 1.1: A graph with three communities, enclosed by dashed circles

Society offers a wide range of possible groups of organizations: families, working and friend-
ship circles, villages, towns, nations. Growth of Internet over the years also led us to the
creation of virtual groups like online communities, forums and online gaming communities.
Social communities have been studied for a long time [4]. Communities also occur in many
networked systems from biology, computer science, engineering, economics, politics etc. In the
graph of world wide web, they may correspond to groups of pages dealing with the same or
related topics [6].

Communities can have concrete applications. Clustering web clients who have similar interests
and geographically near to each other may improve the performance of services provided on
the world wide web, each cluster of clients can be served by a specific mirror server. Identifying
clusters of customers with similar interests in the network of purchase relationship between
customers and products of online retailers enables insight into customers’ purchase behavior
and also helps retailers to setup efficient recommendation systems [7].

In every network, communities form because of some kind of interaction between nodes. In
real life that could be interacting with each other. In animals that are being seen together or in a
worldwide network, interaction between different system can produce community structures.
In Figure (1.2)(a), shows the famous Zachary’s network of karate club members, a well-known
graph regularly used in community detection benchmarking. It is consists of 34 nodes rep-
resenting the 34 members of the club. It’s visible from the figure that communities evolved
around node 1, 33 and 34(the president of the club). The nodes in this network, inside a com-
munity is tightly connected as they represent social interaction between club members over 3
years of time period [8].

Figure (1.2)(b) shows the network of bottle-nose dolphins that were seen together more often.
This also reflects the community structures in those dolphins. Figure (1.2)(c) a relationship
between AS (Autonomous Systems) form CAIDA project in 2007 is represented. It shows the
interactions between different AS’s. Nodes and their interactions with other AS is represented
as edges and different colors represent different community structures.

4 Chapter 1. Introduction

(a) (b)

(c)

Figure 1.2: Community structures in different networks: (a) Famous Zachary’s Karate club commu-
nity structures. (b) Network of bottle nose dolphins (c) Community structures found in
autonomous systems interaction with each other in CAIDA project in 2007

1.3. Structure of Transaction-based Networks 5

1.3 Structure of Transaction-based Networks

The use of network theory in transaction-based systems is relatively recent but it grew popular
in the last few years. Since the data in transaction-based systems can be very different, the
networks in transaction-based system are divided into similarity based networks and direct
interaction networks. In similarity based networks, a link is drawn between two vertices if they
share some features like strategy, behavior, income etc. This means that agents do not interact
with each other but can be connected if they are similar. In direct interaction networks, a link
between two nodes signals the presence of an interaction between the entities represented by
the two nodes connected by the link.

1.3.1 Transaction Networks

The most immediate application of networks to finance and economics is given whenever we
have a transaction between two agents. The agents are the vertices and the transaction is the
edge between them. In practice, the nodes represent banks and the weighted and directed
edges represent a possible relation between banks. For transaction networks, two types of net-
works are considered to be most common. First, the inter-bank market and Second, payment
system. Boss et al. in [9], the inter-bank market is described as a network where the vertices
given by the banks are nodes and the claim and liabilities between them are described as links.
The inter-bank market is, therefore, a weighted and directed network.

1.4 Distributed Ledger / Blockchain

Blockchain is a distributed database solution that maintains a continuously growing list of data
records that are confirmed by the nodes participating in it. Figure (1.3) explains blockchain
technology and it’s different steps in the process of approving a transaction and adding a block
of data to the root chain of blocks. The data is recorded in a public ledger, including informa-
tion about every transaction ever completed. Blockchain is a decentralized solution which does
not require any third party organization in the middle. The information about every transac-
tion ever completed in Blockchain is shared and available to all nodes. This attribute makes
the system more transparent than centralized transactions involving a third party. In addition,
the nodes in Blockchain are all pseudonymized, which makes it more secure for other nodes
to confirm the transactions. Bitcoin was the first application that introduced Blockchain tech-
nology. Bitcoin created a decentralized environment for cryptocurrency, where the participants
can buy and exchange goods with digital money [10]. A blockchain database is managed au-
tonomously using a peer-to-peer network and a distributed time-stamping server. They are
authenticated by mass collaboration powered by collective self-interests. The result is a robust
work-flow where participants’ uncertainty regarding data security is marginal.

6 Chapter 1. Introduction

Figure 1.3: Blockchain explained

1.4.1 Why Blockchain?

Blockchain is gaining popularity day by day for the past few years because of the security
and anonymity it offers. Blockchain technology has allowed bitcoin to flourish and become
one of the most successful cryptocurrency over the years [11]. Blockchain transactions are
worldwide and all the transaction data is public because it uses a distributed ledger system.
It offers anonymity and irreversible, virtually unhackable security that protects transactions
and assets. In Figure (1.3), it shows that an approved block contains the hash of previous
block and the previous block contains the hash it’s previous block and so on. So to alter a
block in the chain would be nearly impossible because to change one block, all the blocks
needed to be changed and because it uses distributed ledger it’s nearly impossible to get hold
of all the ledger copies that are available over internet. There is also a business gain from
ICO (Initial Coin Offering) from blockchain community for investing in different project. Its
practically IPO (Initial Public Offering) on the basis of cryptocurrency. ICOs are changing how
investors invest in and with cryptocurrency. So it’s gaining popularity quick and people are
getting more interested in buying cryptocurrency which leads to high value of cryptocurrency
in the real world market. Blockchain technology is being used for asset transactions so it is
a massive transaction-based network. For the scope of this thesis, blockchain is a suitable
match as the transaction data is public, network is massive and transaction-based. Studying

1.5. Community Detection in Transaction-based Networks 7

blockchain data and analyzing the network structure of blockchain will provide more deep
insight about the properties of blockchain and network itself. It will also provide insight into
business applications of blockchain. The security architecture can be better understood through
community detection and observation. It will also help to learn how the transaction-based
networking is changing over time allowing us to analyze the past transactions and predict
future behavior of the network itself.

1.5 Community Detection in Transaction-based Networks

Recently the research on network-based graph theories has increased [1]. As a result, the com-
plex and large-scale systems are being researched as well, based on different kinds of networks
that exist in real-life. So to detect communities in a large-scale transaction-based systems, it
is necessary to explore the idea of community, detection of community structures in large or
massive graphs representing a system, characteristics of detecting communities in large-scale
networks. It might also be necessary to explore additional techniques to actively monitor and
keep track of previously detected community structures in a massive graph.

1.5.1 Detection of Dynamic Community

Community structures can change over time in transaction-based networks. It can have new
nodes and new edges in between the existing nodes or can have new nodes connected to the
old nodes through new edges. Those communities are actively changing its structure over time.
It’s a difficult and time consuming task to keep track of constantly changing communities. The
analysis of dynamic communities is still in its infancy [4]. Studies in this direction have been
mostly hindered by the fact that the problem of graph clustering is already controversial on
single graph realizations, so it is understandable that most efforts still concentrate on the static
version of the problem. Another difficulty is represented by the dearth of time-stamped data
on real graphs. Recently, several data-sets have become available, enabling to monitor the evo-
lution in time of real systems [12]. So it has become possible to investigate how communities
form, evolve and die. The main phenomena occurring in the lifetime of a community are in
Figure (1.4): birth, growth, contraction, merger with other communities, split, death.

8 Chapter 1. Introduction

Figure 1.4: Possible scenarios of community evolution [12]

One of the main objectives of this thesis is to explore and observe how community changes over
the time and how to create a structured framework to track communities over time. Figure (1.4)
is a good example of community changing over time. Community can get bigger or smaller, it
can also split into different communities and can die.

2 Related Work
Section (1.2), describes in brief about community structures in graph and its similarities with
real-life. This chapter of the thesis focuses on state of the art community detection techniques
and explains the algorithms in details. It also focuses on state of the art community detection
algorithms and their complexity factors regarding run-time and space. Preceding literature of
this chapter unfolds some of the widely used algorithms for community detection and also
explores the complexity factors.

2.1 Problems of community detection

Mostly, two paradigms are used to discover the community structure of a network. One of
them is based on the analysis of the global features of the network. We can consider network
topology as an example. These approaches are characterized by high computational complex-
ity and high-quality results. The other paradigm relies on the local information of the network.
For an example of local information would be, information that is acquired by the nodes and
their neighbors. The computational cost for these techniques is lower than those exploiting
global features but the reliability decreases [13].

Over the years many techniques have been proposed to detect community structures in large
networks. There exist numerous comprehensive surveys of this problem such as [14], [4], [15].
The problem of finding communities in a network is intended as a data clustering problem.
Two approaches have been widely investigated over the time for community detection in net-
works,

• Spectral Clustering

• Network Modularity Optimization

Spectral clustering uses the optimization of the process of cutting the graph that represents the
network and Modularity optimization focuses on maximizing the modularity (quality function)
of the network. For the first process, the problem of minimizing the number of cuts in a given
graph has been proven to be NP-hard [16]. The main issue with spectral clustering based
method is that one has to know in advance the number and the size of communities in a given
graph representing a network. In large networks, this method is not feasible.

As for modularity optimization relies on a concept called network modularity. Network modu-
larity is explained in details in this chapter earlier. Equation (2.27) reveals a possible maximiza-
tion strategy: in order to increase the value of first term, the highest possible number of edges
should fall in each given community, whereas the minimization of the second term is obtained
by dividing the network into several communities with small total degrees. The problem of

9

10 Chapter 2. Related Work

maximizing the network modularity had been proven to be NP-Complete [17]. Several heuris-
tic strategies have been proposed so far. (2.2.3) and (2.3.3) proposed by Girvan-Newman are
probably the most popular strategy to determine communities in a given graph representing
a network. When considering a strategy to compute and detect communities, it’s important
to consider the resource needed and time for completing the computation. The computational
cost for modularity maximization is high. It yields O(n3) where n is the number of nodes. In
this process, the largest part of the cost is given to calculate betweenness centrality. Betweenness
centrality is explained in brief in this chapter earlier in section (2.3.3).

Several variations of this strategy have been proposed and all of them were focused on faster
calculation and detection on communities. The fast clustering algorithm by Clauset, Newman
and Moore [18], that runs inO(n log n) on sparse graphs; the external optimization method pro-
posed by Duch and Arenas [19], based on fast agglomerative approach, with O(n2 log n) time
complexity; the Newman-Leicht [20] mixture model based on statistical inferences. Maximiza-
tion techniques by Newman [21] based on eigenvectors and matrices.

2.2 Literature Review

Over the past years, network research across the physical and social sciences grew very fast[22].
As a result, there are several techniques to determine community structure in a network. Find-
ing communities within an arbitrary network can be a computationally difficult task. The num-
ber of communities, if any, within a network, is generally unknown and communities are often
unequal in size or density. Despite these difficulties, however, several methods for community
finding have been developed and employed with varying levels of success [14]. Following is a
list of few well known community detection algorithms for large-scale networks and this chap-
ter of the thesis is focused on technical aspects of these algorithms for community detection in
large-scale networks.

1. InfoMap

2. Louvain Method

3. Girvan-Newman algorithm

4. Modularity maximization (Quality Function)

5. Hierarchical clustering

6. Graph partitioning

7. Minimum cut method

8. Statistical inference

9. Clique-based methods

These algorithms are chosen because of the nature of their performance against large-scale net-
works. According to the authors of these algorithms each one of them is fast and optimized
for community detection. Authors of each algorithm have chosen different approach to de-
tect communities in large-scale networks. Next section will attempt an ordered exposition of

2.2. Literature Review 11

the fundamental concepts of some of these algorithms to explore the ideas and technical back-
ground behind these community detection algorithm in respect to large-scale transaction-based
network. Although all the algorithm mentioned above are deemed fast enough at the time of
their publications, some of them might not be suited for detecting community structures in
large-scale transaction-based network. In chapter (4), these algorithms will be evaluated with
a prototypical framework for detecting communities in distributed ledger network.

2.2.1 Infomap

Communities refer to groups of nodes that are densely connected internally. Community de-
tection in networks is challenging, and many algorithms have been proposed in the last few
years to tackle this difficult problem. The current implementation of Infomap is both fast and
accurate [23]. It can classify millions of nodes in minutes and performs very well on synthetic
data with planted communities. Furthermore, the map equation framework is also naturally
flexible and can be straightforwardly generalized to analyze different kinds of network data
[23]. Infomap uses, map equation [24] first introduced by Martin et. al in 2009. The map
equation is a Flow-based method. Methods based on flows operate on the dynamics on the
network rather than on its topological structure per se. The rationale is that the prime function
of networks is to capture the flow between the components of the real systems they represent.
Accordingly, communities consist of nodes among which flow persists for a long time once
entered [23]. Map equation uses Huffman coding [25] to send the location of the random walker
[26] in the flow. Moreover, it is optimal for describing a list of locations of the random walker
at arbitrary (and sufficiently distant) times. However, it can be used to list the locations visited
by a random walker in a sequence of successive steps, after all this is the flow of the network
[24].

2.2.2 Louvain Method

Louvain Method (henceforth, LM) was first introduced by Bodel et al. in 2008 in [27]. The au-
thors in this publication proposed a simple method to extract the community structure of large
networks. The proposed method is a heuristic method that is based on modularity optimiza-
tion (2.27). LM has outperformed all other known community detection methods in terms of
computation time [13]. The subject of computation time of different community detection algo-
rithms will be discussed in a comparative manner later in this chapter. Moreover, depending
on modularity function, community detected by LM is very good. The authors introduced an
algorithm that is capable of detecting high modularity partitions of large networks in a short
time and it also unfolds a complete hierarchical community structure for the network. This
unfolding process of unfolding structure gives access to different levels of resolutions of com-
munity detection. Authors have tested the algorithm with 118 million nodes network which
took only 152 minutes1 [27]. In 2011, Meo et al. in [13] proposed a generalized LM for commu-
nity detection in large network with a brief discussion of core LM [27] and with the help of the

1 All methods described in [27] have been compiled and tested on the same machine: a biopteron 2.2k with 24GB
of memory

12 Chapter 2. Related Work

state of the art LM and K-path edge centrality, message propagation and fast K-path commu-
nity detection. In this recent paper the authors have shown that their algorithm outperforms all
the other community detection algorithms and also slightly improves the core LM [13].

2.2.3 Girvan-Newman Algorithm

The most popular algorithm for community structure detection was proposed by Girvan and
Newman [1]. This algorithm marked the new era in community detection. Here edges are
selected according to the values of measures of edge centrality, estimating the importance of
the edge according to some property or process running on the graph. Girvan and Newman
focused on the concept of betweenness (2.3.3), which is a variable expressing the frequency of
the participation of edges to a process. They considered three alternative definitions: geodesic
edge betweenness, random-walk edge betweenness and current-flow edge betweenness [4]. Edge be-
tweenness is highest for the edge connecting communities. In the Figure (2.3) the edge in the
middle has a much higher betweenness than all the other edges. The algorithm stated in [1] is
as follows:

1. Calculate the betweenness for all edges in the network.

2. Remove the edge with the highest betweenness.

3. Recalculate betweenness for all edges affected by the removal.

4. Repeat from step 2 until no edges remain.

2.2.4 Modularity Maximization (Quality Function)

Algorithms for community detection are supposed to identify good partitions. The question
remains, what is a good clustering? In order to distinguish between a “good" and “bad" clus-
tering, it would be useful to require that partitions satisfy a set of basic properties. In [28], J.
Kleinberg proved an impossibility theorem in the field of data clustering.

Given a set S of points, a distance function d is defined, which is positive definite and symmetric
(the triangular inequality is not explicitly required). One wishes to find a clustering f based on
the distances between the points. Kleinberg showed that no clustering can satisfy the following
three properties at the same time.

1. Scale-invariance: given a constant α, multiplying any distance function d by α yields the
same clustering.

2. Richness: any possible partition of the given point set can be recovered if one chooses a
suitable distance function d.

3. Consistency: given a partition, any modification of the distance function that does not
decrease the distance between points of different clusters and that does not increase the
distance between points of the same cluster, yields the same clustering.

2.3. Background 13

The theorem cannot be extended to graph clustering because the distance function cannot be
in general defined for a graph which is not complete. For weighted complete graph, like corre-
lation matrices [29], it is often possible to define distance function. On a generic graph, except
for the first property, which does not make any sense without distance function,2 the other two
are quite well defined.

The property of richness implies, given a partition, edges can be set between the vertices in such
a way that the partition is a natural outcome of the resulting graph (e.g., it could be achieved by
setting edges only between vertices of the same cluster). Consistency here implies that deleting
inter-cluster edges and adding intra-cluster edges yields the same partition.

2.3 Background

In previous section (2.2) of this thesis, some of the community detection algorithms have been
introduced and discussed in brief. This section will focus on the technical backgrounds, math-
ematics and equations that explain the algorithms described in section (2.2).

2.3.1 Infomap Algorithms

Infomap optimizes the map equation, which exploits the information-theoretic duality between
the problem of compressing data, and the problem of detecting and extracting significant pat-
terns or structures within those data. Infomap captures flow patterns modeled with both first-
order dynamics (as on a conventional network: where flow moves to on the network only
depends on where it currently is) and second-order dynamics (where flow moves to on the
network both depends on where it currently is and where it just came from). Infomap captures
second-order dynamics by performing first-order dynamics on memory nodes [30]. The cal-
culation process of Infomap algorithm is divided into two steps. First, The communities and
nodes are coded respectively by the algorithm, the coding length is minimized, where n is the
number of nodes in the network, the computable complexity is O(n3). Secondly, the modular-
ity of the community detection is optimized by simulated annealing algorithm. This method
can reduce the previous time complexity into O(n2) [31].

Map Equation

Map equation provides the theoretical limit of how concisely the network path is specified
using a given partition structure. To find an optimal partition of the network, it is sufficient to
calculate this theoretical limit for different partitions of the network and pick the one that gives
the shortest description length.

For a module M of n nodes α = 1, 2, 3, ..., n into m modules i = 1, 2, 3,, m, defined as the
lower bound on code length to be L(M). To calculate L for an arbitrary partition, Shanon’s
source coding theorem [32] is invoked. Which implies that, use of n codewords to describe the
n states of a random variable X that occur with frequency Pi, the average length of a codeword

2 The traditional shortest path distance between vertices is not suitable here, as it is integer by definition

14 Chapter 2. Related Work

can be no less than the entropy of the random variable X itself: H(X) = ∑n
1 Pilog(Pi) To

calculate the average length of the code describing a step of the random walk, weight of average
length is needed from the index codebook (refer to [25] and [24]) and module codebooks by
their rates of use. The map equation is:

L(M) = qyH(Q) +
m

∑
i=1
P i
�H(P i) (2.1)

Here H(Q) is the frequency-weighted average length of codewords in the index codebook
and H(P i) is the frequency-weighted average length of codewords in the module codebook
i. Further, the entropy terms are weighted by the rate at which the codebooks are used. With
qiy for the probability to exit module i, the index codebook is used at a rate qy = ∑m

i=1 qiy,
the probability that the random walker switches modules on any given step. With pα for the
probability to visit node α, module codebook i is used at a rate pi

y = ∑α∈i pα+ qiy, the fraction
of time the random walk spends in module i plus the probability that it exits the module and
the exit message is used. Now it is straightforward to express the entropies in qiy and pα. For
the index codebook, the entropy is

H(Q) = −
m

∑
i=1

qiy
∑m

j=1 qjy
log

(
qiy

∑m
j=1 qjy

)
(2.2)

and for module codebook i the entropy is

H(P i) = − qiy
qiy + ∑β∈i pβ

log

(
qiy

qiy + ∑β∈i pβ

)
−∑

α∈i

pα

qiy + ∑β∈i
log

(
pα

qiy + ∑β∈i

)
(2.3)

By combining Equations (2.2) and (2.3) and simplifying, the map equation (2.1) takes the fol-
lowing form:

L(M) =

(
m

∑
i=1

qiy

)
log

(
m

∑
i=1

qiy

)
− 2

m

∑
i=1

qiylog(qiy)

−
n

∑
α=1

pαlog(pα) +
m

∑
i=1

(
qiy + ∑

α∈i
pα

)
log

(
qiy + ∑

α∈i
pα

)
(2.4)

In this expended form of the map equation, the term ∑n
α=1 pαlog(pα) is independent of parti-

tioning, and elsewhere in the expression pα appears only when summed over all nodes in a
module.

The node visit of node α simply corresponds to the relative weight Wα of the links connected
to the node considering the network is undirected. The relative weight is the total weight of
the links connected to the node divided by twice the total weight of all links in the network,
which corresponds to the total weight of all link-ends. With Wα for the relative weight of node
α, wi = ∑α∈i wα for the relative weight of module i, wiy for the relative weight of links exiting
module i, and wy = ∑m

i=1 wiy for the total relative weight of links between modules, the map

2.3. Background 15

equation is as follows:

L(M) = wylog(wy)− 2
m

∑
i=1

wiylog(wiy)

−
n

∑
α=1

wαlog(wα) +
m

∑
i=1

(wiy + wi)log(wiy + wi) (2.5)

Two-level Algorithm

The core of the algorithm follows closely the Louvain method (2.2.2): neighboring nodes are
joined into modules, which subsequently are joined into super-modules and so on. First, each
node is assigned to its own module. Then, in random sequential order, each node is moved to
the neighboring module that results in the largest decrease of the map equation. If no move
results in a decrease of the map equation, the node stays in its original module. This procedure
is repeated, each time in a new random sequential order until no move generates a decrease of
the map equation. Now the network is rebuilt, with the modules of the last level forming the
nodes at this level, and, exactly as at the previous level, the nodes are joined into modules. This
hierarchical rebuilding of the network is repeated until the map equation cannot be reduced
further.

With this algorithm, a fairly good clustering of the network can be found in a very short time.
This algorithm is called the core algorithm. The nodes assigned to the same module are forced
to move jointly when the network is rebuilt. As a result, what was an optimal move early in the
algorithm might have the opposite effect later in the algorithm. Because two or more modules
that merge together and form one single module when the network is rebuilt can never be
separated again in this algorithm, the accuracy can be improved by breaking the modules of
the final state of the core algorithm in either of the two following ways:

Sub-module movements: First, each cluster is treated as a network on its own and the main al-
gorithm is applied to this network. This procedure generates one or more sub-modules for
every module. Then all sub-modules are moved back to their respective modules of the pre-
vious step. At this stage, with the same partition as in the previous step but with each sub-
module being freely movable between the modules, the main algorithm is re-applied on the
sub-modules.

Single-node movements: First, each node is re-assigned to be the sole member of its own module,
in order to allow for single-node movements. Then all nodes are moved back to their respective
modules of the previous step. At this stage, with the same partition as in the previous step but
with each single node being freely movable between the modules, the main algorithm is re-
applied on the single nodes. In practice, the two extensions are repeated to the core algorithm in
sequence and as long as the clustering is improved. Moreover, the sub-module movements are
applied recursively. That is, to find the sub-modules to be moved, the algorithm first splits the
sub-modules into sub-sub-modules, sub-sub-sub-modules, and so on until no further splits are
possible. Finally, because the algorithm is stochastic and fast, we can restart the algorithm from
scratch every time the clustering cannot be improved further and the algorithm stops.

16 Chapter 2. Related Work

The implementation is straightforward and, by repeating the search more than once, 100 times
or more if possible, the final partition is less likely to correspond to a local minimum. For
each iteration, the clustering is recorded if the description length is shorter than the previously
shortest description length [33].

Multilevel Algorithm

Infomap uses generalized search algorithm for the two-level map equation to recursively search
for multilevel solutions. The recursive search operates on a module at any level; this can be all
the nodes in the entire network or a few nodes at the finest level. For a given module, the al-
gorithm first generates sub-modules if this gives a shorter description length. If not, the recur-
sive search does not go further down this branch. But if adding sub-modules gives a shorter
description length, the algorithm tests if movements within the module can be further com-
pressed by additional index codebooks. Further compression can be achieved both by adding
one or more coarser codebooks to compress movements between sub-modules or by adding
one or more finer index codebooks to compress movements within sub-modules. To test for all
combinations, the algorithm calls itself recursively, both operating on the network formed by
the sub-modules and on the networks formed by the nodes within every sub-module. In this
way, the algorithm successively increases and decreases the depth of different branches of the
multilevel code structure in its search for the optimal hierarchical partitioning. For every split
of a module into sub-modules, the two-level search algorithm (2.3.1) described above is being
used [33].

2.3.2 Louvain Method Algorithm Structure

Louvain Method [27] is a strategy based on local information and well suited for analyzing large
weighted networks. It is based on two simple steps:

• Each node is assigned to a community chosen in order to maximize the network modu-
larity Q

• Creating a new network consisting of nodes that are those communities previously found

The algorithm’s efficiency results from the fact that the gain in modularity ∆Q obtained by
moving an isolated node i into a community C can easily be computed by [27]

∆Q =

[
∑in +ki,in

2m
−
(

∑tot +ki

2m

)2
]
−
[

∑in
2m
−
(

∑tot
2m

)2

−
(

ki

2m

)2
]

(2.6)

where ∑in is the sum of the weights of the links inside C, ∑tot is the sum of the weights of the
links incident to nodes in C, ki is the sum of the weights of the links incident to node i, ki,in is
the sum of the weights of the links from i to the nodes in C and m is the sum of the weights
of all the links in the network. The edge weighting is based on the K-path edge centrality, an
approach whose calculation requires a near linear computational cost [34].

2.3. Background 17

K-Path Edge Centrality

For each edge e of a graph G = 〈V, E〉, the K-path edge centrality Lk(e) of e is defined as the
sum, over all possible source nodes s, of the frequency with which a message originated from s
traverses e, assuring that the message traversals are only along random simple paths of at most
k edges [34]. The K-path edge centrality is formalized, for an arbitrary edge e, as follows

Lk(e) = ∑
s∈V

σk
s (e)
σk

s
(2.7)

where s are all the possible source nodes, σk
s (e) is the number ofK-paths originating from s and

traversing the edge e and, finally, σk
s is the number of K-paths originating from s.

In practical cases, the application of equation (2.7) cannot be feasible because it requires to count
all the K-paths originating from all the source nodes s and such number can be exponential in
the number of nodes of G. To this purpose, authors in [34] designed algorithms capable of
efficiently approximating the value of K-path edge centrality.

The algorithm called Edge Random Walk K-Path Centrality (or in short, ERW-KPath)for comput-
ing K-path edge centrality consists of two main steps:
(i) node and edge weights assignment
(ii) simulation of message propagation through random simple paths.

Node and edge weights assignment

In the first step of the algorithm, weight is assigned to both nodes and edges of the graph
G = 〈V, E〉 representing the network. Weights on nodes are used to select source nodes from
which message propagation simulation starts. Weights on the edges represent initial values
of edge centrality and to comply with the second (ii) step of the algorithm they will update
during the execution of the algorithm. To compute weights on the nodes, authors in [34] has
introduced the normalized degree δ(vn) of a node vn ∈ V as follows:

Normalized Degree:
Given an undirected graph G = 〈V, E〉 and a node vn ∈ V, its normalized degree δ(vn) is

δ(vn) =
| I(vn) |
| V | (2.8)

where I(vn) represents the set of edges incidents on vn. The normalized degree δ(vn) correlates
the degree of vn and the number of total nodes on the network. It also represents that how
much a node contributes to the overall connectivity of the graph. Its value belongs to the inter-
val of [0, 1] and the higher δ(vn), the better vn is connected to the graph.

Initial edge weight:
Given an undirected graph G = 〈V, E〉 and an edge em ∈ E, its initial edge weight ω0(em)

18 Chapter 2. Related Work

is
ω0(em) =

1
| E | (2.9)

The meaning of equation (2.9) is as follows: an initial "BUDGET" consisting of | E | points;
these points are equally divided among all the possible edges; the amount of points received
by an edge represents its initial rank. Figure (2.1) shows an example of graph G along with the
distribution of weights on nodes and edges.

Figure 2.1: Example of assignment of normalized degrees and initial edge weights [34].

Simulation of message propagation through random simple K-paths

In the second step authors of [34] has introduced ρ simple random walks of length at most K
on the network. The ERW-K-path algorithm performs the following operations at each itera-
tion.

1. A node vn ∈ V of the graph G is selected according to one of the following two possible
strategies:

a. uniformly at random, with a probability:

P(vn) =
1
| V | (2.10)

b. with a probability proportional to its normalized degree δ(vn), given by:

P(vn) =
δ(vn)

∑vk∈V δ(vk)
(2.11)

2. All the edges in G are marked as not traversed

2.3. Background 19

3. The procedure MessagePropagation is invoked

MessagePropagation:
This very procedure carries out a loop as long as both the following conditions hold true:

• The length of the path currently generated is no greater than k. This is managed through
a length counter N

• Assuming that the walk has reached the node vn, there must exist at least an incident
edge on vn which has not been already traversed. To do so, a flag T(em) is attached to
each edge em ∈ E, such that

T(em) =

{
1 if em has already been traversed
0 otherwise

(2.12)

the following condition must hold true:

| I(vn) | > ∑
ek∈I(vn)

T(ek) (2.13)

being I(vn) the set of edges incident onto vn.

If the conditions above are satisfied, the MessagePropagation procedure selects an edge em by
applying two strategies:

a. uniformly at random, with probability

P(em) =
1

| I(vn) | − ∑
ek∈I(vn)

T(ek)
(2.14)

among all the edges em ∈ {I(vn)|T(em) = 0} incident on vn (i.e., excluding already tra-
versed edges)

b. with a probability proportional to the edge weight ωl(em), given by

P(em) =
ωl(em)

∑
em∈ Î(vn)

ωl(em)
(2.15)

being Î(vn) = {ek ∈ I(vn)|T(ek) = 0} and ωl(em) = ωl−1(em) + β · T(em) if 1 ≤ l ≤ kρ

Let em be the selected edge and let vn+1 be the node reached from vn by means of em. The
MessagePropagation procedure awards a bonus β to em, sets T(em) = 1 and increases the counter
N by 1. The message propagation activity continues from vn+1.

Algorithm (1) and algorithm (2) described in this section adopts uniform probability distribu-
tion functions in order to choose nodes and edges purely at random and as discussed before
it is called ERW-Kpath. Although, a weighted version of the same algorithm, called WERW-
Kpath, both algorithms would differ only in line 5, adopting weighted functions specified in
Equations (2.11) and (2.15).

20 Chapter 2. Related Work

Algorithm 1: WERW-Kpath(Graph G = 〈V, E〉, int k, int ρ, float β)

1 Assign each node vn ∈ V its normalized degree
2 Assign each edge em ∈ E the uniform probability function as weight
3 for i = 1 to ρ do
4 N ← 0 a counter to check the length of the k-path
5 vn ← a node chosen uniformly at random in V
6 MessagePropagation(vn, N, k, β)
7 end

Algorithm 2: MessagePropagation(Node vn, int N, int k, float β)

1 while N < k and
[
| I(v) |> ∑e∈I(v) T(e)

]
do

2 em ← em ∈ {I(v)|T(em) = 0}, chosen uniformly at random
3 Let vn+1 be the node reached by vn through em
4 ω(em)← ω(em) + β
5 T(em)← 1
6 vn ← vn+1
7 N ← N + 1
8 end

The time complexity if the ERW-KPath algorithm is O(κρ). If, ρ =| E | −1, then algorithm
achieves a good tradeoff between accuracy and computational costs. In fact, in such a case, the
worst case time complexity of ERW-KPath algorithm is O(κ | E |).

Fast K-Path Community Detection

In [13], Meo et al. introduced a generalized LM [27] that outperforms other community detec-
tion techniques and also slightly improves results of the original LM. Authors of [13] named
their proposed algorithm as Fast K-Path Community Detection (or shortly, FKCD), hence-forth
FKCD. This particular algorithm inhabits the main features of the original LM and relies on
three steps:

(i) Ranking edges by using the WERW-Kpath algorithm
(ii) Calculating the proximity (the inverse of the distance) between each pair of connected nodes
(iii) Partitioning the network into communities so to optimize the network modularity [1]

Ranking Edges by Using WERW-Kpath

FKCD algorithm requires a ranking criterion to compute the aptitude of all the edges to prop-
agate information through the network. To do so, FKCD invokes the WERW-Kpath algorithm
(2.3.2). Once all the edges have been labeled with their K-path edge centrality, a ranking in de-
creasing order of centrality could be obtained. The computational cost of this step isO(κ | E |),
with k length of the K-paths and | E | cardinality of E.

2.3. Background 21

Calculation of Proximity Between Each Pair of Connected Nodes

In the second step, FKCD calculates the proximity of each connected pair of nodes using a L2
distance, commonly known as Euclidean distance which has been discussed briefly in this thesis
in section (2.3.5). L2 distance for FKCD is calculated as:

rij =

√
n

∑
κ=1

(Lκ(eiκ)− Lκ(eκ j))
2

d(κ)
(2.16)

where Lκ(eiκ) (resp., Lκ(eκ j)) is the kappa-path edge-centrality of the edge eiκ (resp., eκ j) and
d(κ) is the degree of the node.

Even though L2 measure would return a distance, in this case, the higher Lκ(eiκ) (resp., Lκ(eκ j)),
the more the nodes are near, instead of distance. This step of FKCD algorithm is theoretically
computationally expensive because it should require O(| V |2) iterations. But in practice, by
adopting optimization techniques, its near-linear computation cost isO(d̄(v) | V |), where d̄(v)
is the mean degree of all the nodes of the network (it’s usually small in very large networks)
[13].

Network Partitioning

The principal idea of network partitioning is inspired by the LM [27] for detecting the commu-
nity structure of weighted networks in a near linear time. Network partitioning is an iterative
process. At each iteration FKCD repeats two simple steps:

(i) Each node is assigned to a community chosen in order to maximize the network modu-
larity Q. This process has been discussed explicitly in section (2.3.4).
(ii) The second step produces a meta-network whose nodes are those communities previously
found. partitioning ends when no further improvements of Q can be obtained.

For this third step, cost of computation is O(γ | V |), where | V | is the cardinality of V and γ
is the number of iterations required by the algorithm to converge (usually, γ < 5) [13].

Algorithm 3: FKCD(Graph G = (V, E), int κ)

1 WERW-Kpath(G, κ) // Using algorithm (1)
2 CalculateDistance(G) // Calculates distance with Eq. (2.16)
3 while Q increases at least of ∈ (arbitrarily small) do
4 P = Partition(G) // Partitioning is done with (8)
5 Q← NetworkModularity(P) // Measures modularity with Eq. (2.27)

6 end

The computational cost for the whole strategy described in this algorithm is near linear. In fact,
O(κ | E | + d̄(e) | V | + γ | V |) = O(τ | E |), by adopting efficient graph memorization in
order to minimize the execution time for the computation of Equations (2.27) and (2.16).

22 Chapter 2. Related Work

2.3.3 Girvan-Newman Algorithm Architecture

Edge betweenness is the number of shortest paths between all vertex pairs that run along the
edge. It is an extension to edges of the popular concept of site betweenness, introduced by Free-
man [35] and expresses the importance of edges in processes like information spreading, where
information usually spreads through the shortest paths. It is intuitive that inter-community
edges have a large value of the edge betweenness, because many shortest paths connecting ver-
tices of different communities will pass through them (2.3). If there are two or more geodesic
paths with the same endpoints that run through an edge, the contribution of each of them to
the betweenness of the edge must be divided by the multiplicity of the paths. The betweenness
of all edges of the graph can be calculated in a time that scales as O(mn), or O(n2) on a sparse
graph, with techniques based on breadth-first-search [36].

In the context of information spreading, it is very common and realistic that signals flow across
random rather than geodesic paths. In this case, the betweenness of an edge is given by the
frequency of the passages across the edge of a random walker running on the graph (random-
walk betweenness). A random walker moving from a vertex follows each adjacent edge with
equal probability. A pair of vertices is chosen at random, s and t. The walker starts at s and
keeps moving until it hits t, where it stops. Calculation of random-walk betweenness requires
the inversion of an n× n matrix (once), followed by obtaining and averaging the flows for all
pairs of nodes. The first task requires a time O(n3), the second O(mn2), for a total complexity
O[(m + n)n2], or O(n3) for a sparse matrix. The complete calculation requires a time of O(n3)
on a sparse graph.

Current-flow betweenness is defined by considering the graph a resistor network, which edges
having unit resistance. If a voltage difference is applied between two vertices, each edge carries
some amount of current, that can be calculated by solving Kirchoff’s equations. The procedure is
repeated for all possible vertex pairs. The calculation of current-flow betweenness has the same
complexity as random-walk betweenness O[(m + n)n2], or O(n3) for a sparse graph.

Betweenness Centrality

Girvan-Newman algorithm uses betweenness centrality to detect community structure in a graph.
To sidestep the shortcomings of the hierarchical clustering method, in this algorithm, they pro-
posed an alternative approach. Instead of trying to construct a measure that tells which edges
are most central to communities, in this algorithm they focused on this edges that are least
“central", the edges that are most “between" communities. The betweenness centrality of a ver-
tex v is defined as the number of shortest paths between pairs of other vertices that run though
v [35].

CB(v) = ∑
s 6=v 6=t∈V

σst(v)
σst

(2.17)

where σst denotes the number of shortest paths from s ∈ V to t ∈ V and σst(v) denotes the
number of shortest paths from s to t that some v ∈ V lies on.

The betweenness centrality of a node scales with the number of pairs of nodes as implied by
the summation indices. Therefore, the calculation may be re-scaled by dividing through by the

2.3. Background 23

number of pairs of nodes not including v, so that CB(v) ε [0, 1].

For undirected networks, the normalized betweenness centrality is given by

CB(v) =
2

n2 − 3n + 2
· ∑

s 6=v 6=t∈V

σst(v)
σst

(2.18)

For undirected networks, we divided the betweenness centrality by (n− 1)(n− 2)/2, where n
is the number of nodes in the graph.

For directed networks, the normalized betweenness centrality is given by

CB(v) =
1

n2 − 3n + 2
· ∑

s 6=v 6=t∈V

σst(v)
σst

(2.19)

For directed networks, we divided the betweenness centrality by (n− 1)(n− 2), where n is the
number of nodes in the graph [37].

Usually, values are normalized to obtain values between 0 and 1. The highest possible value
occurs when one node is located on every single shortest path (star graph). An example from
[37], let’s consider the following undirected network:

Figure 2.2: A simple undirected network

CB(v) Normalized CB(v)
A 0 0
B 3.0 0.5
C 5.0 0.83
D 0 0
E 0 0

Table 2.1: An example of betweenness centrality measure calculated from Figure (2.2)

Girvan-Newman algorithm calculates the betweenness using the fast algorithm of Newman
[1, 38]. This calculates the betweenness for m edges in a graph of n vertices in time O(mn).
To reduce the running time of the algorithm further, one might be tempted to calculate the

24 Chapter 2. Related Work

betweenness of all the edges only once and then remove them in order of decreasing between-
ness. But this strategy does not work well because if two communities are connected by more
than one edge, then there is no guarantee that all of those edges will have high betweenness. In
practical applications, the Girvan-Newman algorithm with betweenness centrality gives bet-
ter results than adopting other centrality measures [36], although Girvan-Newman algorithm
cannot find overlapping communities, as each vertex is assigned to a single cluster.

Fast Algorithm of Newman

To detect community structure in a sparse network faster, Newman has proposed an algorithm,
known as Fast algorithm of Newman. This algorithm is based on the idea of modularity. Given
any network, the GN community structure algorithm [1] always produces some division of
the vertices into communities, regardless of whether the network has any natural such divi-
sion [38]. To test whether a particular division is meaningful, this algorithm defines a quality
function or modularity Q as follows [1].

Let eij be one-half of the fraction of edges in the network that connect vertices in group i to
those in group j, so that the total fraction of such edges is eij + eji. The only exception will be
the diagonal elements eii, which are equal to the fraction of edges that fall within group i (with
no factor of a half). Then ∑i eii is the total friction of edges that fall within groups. All other
edges fall between groups. The maximum value of this sum is 1, and a division of the network
into communities is good if this quality is large, meaning it is of order 1.

Let ai be the fraction of all ends that are attached to vertices in group i. We can calculate ai
straightforwardly by noting that ai = ∑j eij. If the ends of edges are connected together at
random, the fraction of the resulting edges that connect vertices within group i is a2

i . We define
the modularity Q as:

Q = ∑
i
(eii − a2

i) (2.20)

If a particular division gives no more within-community edges than would be expected by
random chance, this modularity is Q = 0. Values other than 0 indicates deviations from ran-
domness and in practice values greater than about 0.3 appear to indicate significant community
structure [36].

The fast algorithm of Newman starts with a state in which each vertex is a sole member of
one of n communities, it repeatedly joins communities together in pairs, choosing at each step
the join that results in the greatest increase (or smallest decrease) in Q. The process of this
algorithm can be represented as a dendrogram as in Figure(2.4). Since, the joining of a pair of
communities between which there are no edges at all can never result in an increase in Q, the
algorithm only considers those pairs between which there are edges, of which there will at any
time be at most m, where m is the number of edges in the graph. The change in Q upon joining
two communities is given by

∆Q = eij + eji − 2aiaj = 2(eij − aiaj) (2.21)

which can clearly be calculated in constant time. There is a maximum of n− 1 join operations

2.3. Background 25

necessary to construct the complete dendrogram and hence the entire algorithm runs in time
O((m + n)n), or O(n2) on a sparse graph [38].

2.3.4 Modularity Maximization Technique

A quality function is a function that assigns a number to each partition of a graph. In this way,
one can rank partitions based on their score given by the quality function. Partition with high
scores are marked as “good", so the one with largest score is by definition the best. Never-
theless, one should keep in mind that the question is when a partition is better than another
one is ill-posed, and the answer depends on the specific concept of community and/or quality
function adopted.

A quality function Q is additive if there is an elementary function q such that, for any partition
P of a graph

Q(P) = ∑
C∈P

q(C), (2.22)

where C is a generic cluster of partition P . Above Eq.(2.22) states that the quality of a partition
is given by the sum of the qualities of the individual clusters. The function q(C) could be any
of the cluster fitness functions adopted.

An example of a quality function is the performance P, which counts the number of correctly
"interpreted" pairs of vertices, i.e. two vertices belonging to the same community and con-
nected by an edge, or two vertices belonging to different communities and not connected by
an edge. The definition of performance, for a partition P , is

P(P) =
|{(i, j) ∈ E, Ci = Cj}|+ |(i, j) /∈ E, Ci 6= Cj|

n(n− 1)/2
(2.23)

By definition, 0 ≤ P(P) ≤ 1 [4].

Modularity is the fraction of the edges that fall within the given groups minus the expected
fraction if edged were distributed at random. the value of modularity lies in the range of
[−1/2, 1). It is positive if the number of edges within groups exceeds the number of expected
on the basis of change. For a given division of the network’s vertices into some modules, mod-
ularity reflects the connection of edges within modules compared with the random distribution
of links between all nodes regardless of modules. In the most common version of this concept,
randomization of the edges is done so as to preserve the degree of each vertex.

Consider a graph with n nodes and m edges such that the graph can be partitioned into two
communities using a membership variable s. If a node i belongs to community X, si = 1, or if
i belongs to community Y, si = −1. Let the adjacency matrix of the network be presented by
A, where Aij = 0 means that there’s no edge between node i and j. On the other hand, Aij = 1
means there is an edge between the two. Also for simplicity, we consider an undirected graph.
Thus, Aij = Aji

3. Modularity Q is then defined as the fraction of edges that fall within group
X or Y, minus the expected number of edges within groups X and Y for a random graph with
the same node degree distribution as the given network.

3 It is important to note that multiple edges may exist between two nodes, but here we asses the simplest case.

26 Chapter 2. Related Work

The expected number of edges shall be computed using the concept of configuration models
[39]. The configuration model is a randomized realization of a particular network. Given a
network with n nodes, where each node i has a node degree ki, the configuration model cuts
each edge into two halves, and then each half edge called a stub, is rewired randomly with any
other stub in the network even allowing self-loops. Thus, even though the node degree dis-
tribution of the graph remains intact, the configuration model results in a completely random
graph.

Let the total number of stubs be ln:

ln = ∑
i

ki = 2m (2.24)

Now, if we randomly select two nodes i and j with node degrees ki and k j respectively and
rewire the stubs for these two nodes, then:

Expectation of full edges between i and j =
(Full edges between i and j)

(Total number o f rewiring possibilities)

The total number of rewiring possible is equal to the number of stubs remaining after choosing
a particular stub, ln−1. For large values on n, ln−1 ≈ ln. Thus,

Expected number of full edges between i and j =
kik j

ln

Hence, the difference between the actual number of edges between node i and j and the ex-
pected number of edges between them is:

Aij −
kik j
2m

Summing over all node pairs gives the equation for modularity, Q.

Q =
1

2m ∑
ij

[
Aij −

kik j

2m

]
sisj + 1

2
(2.25)

It is important to note that Eq.(2.25) holds good for partitioning into two communities only.
Hierarchical4 partitioning is a possible approach to identify multiple communities in a net-
work. Additionally, Eq.(2.25) can be generalized for partitioning a network into nc communi-
ties.

Q =
1

(2m) ∑
ij

[
Aij −

kik j

(2m)

]
δ(Ci, Cj) (2.26)

Where Ai j represents the weight of the edge between i and j, ki = ∑j Ai j is the sum of the
weights of the edges attached to vertex i, Ci is the community to which vertex i is assigned, the
δ-function δ(u, v) is 1 if u = v and 0 otherwise and m = 1

2 ∑ij Aij [27].

4 Partitioning into two communities, then two sub-communities further partitioned into two smaller sub-
communities only to maximize Q.

2.3. Background 27

Since the only contributions to the sum come from vertex pairs belonging to the same cluster,
we can group these contributions together and rewrite the sum over the vertex pairs as a sum
over the clusters,

Q =
nc

∑
c=1

[
lc

m
−
(

dc

2m

)2
]

(2.27)

Here, nc is the number of clusters, lc the total number of edges joining vertices of module c and
dc the sum of the degrees of the vertices of c. In Eq.(2.27), the first term of each sum and is
the fraction of edges of the graph inside the module, whereas the second term represents the
expected fraction of edges that would be there if the graph were a random graph with same
expected degree of each vertex.

A nice feature of modularity is that it can be equivalently expressed both in terms of the intra-
cluster edges, as in Eq.(2.27), and in terms of the inter-cluster edges. In fact, the maximum of
modularity can be expressed as:

Qmax = max
P

{
nc

∑
c=1

[
lc
m −

(
dc
2m

)2
]}

= 1
m max
P

{
nc

∑
c=1

[lc − Ex(lc)]

}
= − 1

m min
P

{
−

nc

∑
c=1

[lc − Ex(lc)]

}
,

(2.28)

where maxP and minP indicate the maximum and the minimum overall possible graph parti-
tions P and Ex(lc) = d2

c /4m indicates the expected number of links in the cluster c in the null
model of modularity. By adding and subtracting the total number of edges m of the graph one
finally gets

Qmax = − 1
m

min
P

{[(
m−

nc

∑
c=1

lc

)
−
(

m−
nc

∑
c=1

Ex(lc)

)]}
= − 1

m min
P

(|CutP | − ExCutP).
(2.29)

In the last expression |CutP | = m−∑nc
c=1 lc is the number of inter-cluster edges of partition P ,

and ExCutP = m − ∑nc
c=1 Ex(lc) is expected number of inter-cluster edges of the partition in

modularity’s null model.

Modularity Optimization

Modularity is by far the most used and best-known quality function [4]. By assumption, a high
value of modularity indicates good partitions. So, the partition corresponding to its maximum
value on a given graph might be the best or at least a very good one. An exhaustive optimiza-
tion of Q is not possible, due to the huge number of ways in which it is possible to partition
a graph, even when the latter is small. Besides, the true maximum is out of reach, as it has
been recently proved that modularity is an NP-complete problem [40], so it is probably impos-
sible to find the solution in a time growing polynomially with the size of the graph. However,
there are currently several algorithms able to find fairly good approximations of the modularity
maximum in a reasonable time.

28 Chapter 2. Related Work

2.3.5 Hierarchical Clustering

The starting point of any hierarchical clustering method is the definition of a similarity measure
between vertices. After the measure is chosen, it computes the similarity for each pair of ver-
tices, no matter if they are connected or not [4]. At the end of this process, a new n× n matrix X,
the similarity matrix is produced. hierarchical clustering techniques aim at identifying groups
of vertices with high similarity and can be classified into two categories:

1. Agglomerative algorithms, in which clusters are iteratively merged if their similarity is suf-
ficiently high

2. Divisive algorithms, in which clusters are iteratively split by removing edges connecting
vertices with low similarity

For the scope of this section we will focus on agglomerative algorithms. This thesis will also
get into Divisive algorithms as it proceeds through different other methods in a later stage.
Agglomerative algorithms are bottom-up, as one starts from the vertices as separate clusters
(singletons) and ends up with the graph as a unique cluster. Science clusters are merged based
on their mutual similarity. It is essential to define a measure that estimates how similar clusters
are out of the matrix X. In single-linkage clustering, the similarity between the two groups is the
minimum element xij, with i in one group and j in the other.

This whole procedure can be better illustrated with the help of dendrogram which is a very
common way to represent the hierarchical structure of graph is to draw a dendrogram, like the
one in Figure (2.4).

Figure 2.3: An example of edge betweenness
Figure 2.4: A dendrogram with twelve nodes

from the graph in Figure (2.3)

Here, partitions of a graph with twelve vertices are shown. At the bottom, each vertex is its
own module (the leaves of the tree). By moving upwards, groups of vertices are successively
aggregated. Based on the given similarity measures mergers of communities are represented
by horizontal lines. The uppermost level represents the whole graph as a single community.
Cutting the diagram horizontally at some height, as shown in the Figure (dashed line), dis-
plays one partition of the graph. The diagram is hierarchical by construction: each community
belonging to a level is fully included in a community at a higher level.

Hierarchical clustering has the advantage that it does not require any preliminary knowledge

2.3. Background 29

on the number and size of the clusters. The result depends on the specific similarity measure
adopted as described in section (2.3.5). Another problem is that vertices with just one neighbor
are often classified as a separated cluster, which does not make any sense. The major weakness
of agglomerative hierarchical clustering is that it does not scale well [4]. If points of a graph
are embedded in space, so that the distance can be used as a dissimilarity measure as described
in section (2.3.5), the computational complexity is O(n2) for single linkage, O(n2 log n) for the
complete and average linkage schemes. For graph clustering, where distance is not trivially
defined, the complexity can become much heavier if the calculation of the chosen similarity
measure is costly.

Vertex Similarity

It is natural to assume that communities are groups of vertices similar to each other. The simi-
larity between each pair of vertices with respect to some reference property, local or global, no
matter whether they are connected by an edge or not can be computed. Each vertex ends up in
the cluster whose vertices are most similar to it.

If it were possible to embed the graph vertices in an n-dimensional Euclidean space, by assigning
a position to them, one could use the distance between a pair of vertices as a measure of their
similarity 5. Given the two data points A = (a1, a2, . . . , an) and B = (b1, b2, . . . , bn), one could
use any norm Lm.

The Euclidean distance(L2-norm):

dE
AB =

n

∑
k=1

√
(ak − bk)2 (2.30)

the Manhattan distance(L1-norm)

dM
AB =

n

∑
k=1
|ak − bk| (2.31)

and the L∞-norm will be
d∞

AB = max
k∈[1,n]

|ak − bk| (2.32)

Another popular spatial measure is the cosine similarity, defined as

ρAB = arccos
a · b√

n
∑

k=1
a2

k

√
n
∑

k=1
b2

k

(2.33)

where a · b is the dot product of vectors a and b. The variable ρAB is defined in the range
[0, π).

If the graph cannot be embedded in space, the similarity must be necessarily inferred from
adjacency relationships between vertices or node properties. A possibility is to define a distance

5 It is actually a measure of dissimilarity because similar vertices are expected to be close to each other.

30 Chapter 2. Related Work

between vertices like [41, 15].

dij =

√
∑

k 6=i,j
(Aik −Ajk)2 (2.34)

where A is the adjacency matrix. This is a dissimilarity measure, based on the concept of struc-
tural equivalence [42]. Two vertices are structurally equivalent if they have the same neighbors,
even if they are not adjacent themselves. If i and j are structurally equivalent, dij = 0. Vertices
with a large degree and different neighbors are considered very far from each other. Alterna-
tively, one could measure the overlap between the neighborhoods Γ(i) and Γ(j) of vertices i and
j, given by the ratio between the intersection and the union of the neighborhoods, i.e.

ωij =
|Γ(i) ∩ Γ(j)|
|Γ(i) ∪ Γ(j)| (2.35)

Another very widely used measure related to structural equivalence is the Pearson Correlation
between columns and rows of the adjacency matrix,

Cij =

∑
k
(Aik − µi)(Ajk − µj)

nσiσj
(2.36)

where the averages µi = (∑
j

Aij/n) and the variances σi =
√

∑
j
(Aij − µi)2/n

2.4 Dynamic Community Detection Algorithms

In section (1.5.1), dynamic community detection and its life cycle is described in brief. Difficulty
in accessing time-stamped data for real systems represented in a graph was the main problem
for dynamic community detection and observation. Until recently, availability of time-stamped
graph data representing real systems lead to a path of community detection and observation,
enabling to monitor the evolution of communities in time. Figure (1.4) illustrates the different
scenarios of the community life-cycle.

The first study about community detection and observation was carried out by Hopcroft et al.
in [43] in 2004. Authors in this article analyzed snapshots of the citation graph data from NEC
CiteSeer Database. These snapshots covered the period from 1990 to 2001. In that article, au-
thor used hierarchical clustering (section 2.3.5) to detect communities, where similarity between
vertices (nodes) is the cosine similarity (Equation 2.33) of the vectors describing the correspond-
ing papers. Authors found the best matching communities across different snapshots and in
this way they were able to observe the evolution of community structures.

In 2007, Palla et al. in [12] performed a semantic analysis of dynamic communities. The authors
used two different data-sets from two different systems. One was a year’s phone call data
and another one was a graph of the collaboration network between scientists, describing co-
authorship of papers over 142 months. They faced a few challenges along the way to determine
the best course of action to detect and observe communities over time, the first challenge was
to identify the image of community C(t + 1) at time t + 1 among the communities of the graph

2.4. Dynamic Community Detection Algorithms 31

at time t. A simple way to see the evolution of community is to see the overlap of communities
between time t and t + 1. The problem is at time-stamp t + 1, a community that existed at
time-stamp t might have changed and in this process, it might miss the actual evolution of
the communities. Authors of [12], solved the problem by using Clique Percolation Method
(see [4] section 11.1). The general idea is to analyze a graph G(t, t + 1), obtained by merging
two snapshots G(t) and G(t + 1) of evolving graph at time-stamp t and t + 1. So these, CPM
communities C t+1 has the largest relative overlap with community C t at time t.

Sun et al. in [44], used a method of information compression called MDL (Minimum Descrip-
tion Length) described in [45] to find the minimum encoding cost for the description of a time
sequence of graphs and their partitions in communities. In this method, a bipartite graph is
considered and the time sequence of the graphs can be separated into segments. For each
graph segment, it is possible to define encoding cost, which combines the encoding cost of the
partition of the graphs of the segment with the entropy of compression of the segment in the
sub-graph segments induced by the partition. The total encoding cost C of the graph series is
given by the sum of the encoding costs of its segment. Minimizing C helps to find not only
most modular partition for each graph segment, but also the most compact subdivision of the
snapshots into segments [45]. Authors call this process Graphscope. It has an advantage of not
requiring any input parameters, like the number and sizes of the clusters. It is also suitable
for operation in streaming environment, in which new graph configurations are added in time,
following the evaluation of the system [44].

It is mention-able that there is another approach that monitors the evolution of communities
based on vertex-centric perspective. In this method, the community of a given vertex is moni-
tored at different times. For any method given a vertex i and a time t, the community to which
i belongs to at the time t is well defined. Fenn et al. in [46] used the multi-resolution method
to analyze a fully connected graph. Authors identify the role of individual vertices in their
community through the pair (zin, zb), where zin is the z-score of the internal strength defined in
Eq. (2.37) introduced by Guimera and Amaral in [47], and zb is the z-score of the site between-
ness, defined by replacing the internal degree with the site betweenness of Freeman [35] in Eq.
(2.37)

zi =
ki − k̄si

σksi

(2.37)

where ki is the internal degree of i in its cluster si, k̄si and σksi
the average and standard deviation

of the internal degrees for all vertices of cluster si.

As a measure of persistence, Fenn et al. introduced a vertex-centric version of the relative
overlap equation:

at
i(τ) =

|Ci(t) ∩ Ci(t + τ)|
|Ci(t) ∪ Ci(t + τ)| (2.38)

Where i is the vertex and Ci(t), Ci(t + τ) the communities of i at times t, t + τ respectively. The
decay of at

i(τ) depends on the type of vertex. In particular, if the vertex is strongly connected
to its community (zi large), at

i(τ) decays quite slowly, meaning that it tends to stay attached to
a stable core of vertices.

3 Concept and Design
In chapter (2), section (2.4) a few techniques for dynamic community detection and observation
over time had been discussed briefly. All those methods of observing community evaluation
have its own way of dealing with the challenges faced during community detection and ob-
servation. This chapter of the thesis will propose and explore a prototypical framework for
detecting and observing community structures over time focusing on large-scale transaction-
based networks, specifically on blockchain transaction networks.

3.1 Proposed Framework Architecture

This thesis proposes a community detection and observation framework called NEOChain.
NEOChain is a framework designed for Network Evolution Observation for Blockchain. It
is a prototypical framework for community detection and observation in large-scale networks,
preferably in blockchain transaction networks domain. Blockchain transaction data is public
and the size of the network is massive. As discussed in chapter (2), blockchain networks are
a suitable match for the scope of this thesis. The proposed prototypical framework can be
expressed in brief as follows:

(i) Find top n communities (henceforth, target communities) Ctop
t from a snapshot of a graph

Gt at time t

(ii) a) Generate a sub-snapshot Gsubt of graph Gt, where vertex Vt ∈ Gsubt is like Vt ∈ Ctop

b) Create a graph Gt,t+1 by merging sub-snapshot Gsubt with new graph snapshot Gt+1
at time t + 1

(iii) Find top n communities Ctop
t+1 from snapshot of graph Gt,t+1 at time t + 1

(iv) Find maximum overlapping communities Cmax
t,t+1 from Ctop

t and Ctop
t+1 and report cluster’s

status in community structure life-cycle.

Phase (i) of the framework takes in a very large graph as input and finds top n communi-
ties in that graph. Selection of top n communities is done by the size of the communities
detected. The total number of nodes in a community represents the community size. A set
of top n communities is returned at the end of phase (i). For example, let’s consider that 20
[C1, C2, C3, C4, . . . , C19, C20] communities were detected at phase (i) and at time t, top n commu-
nities nc = 4. The framework will select top 4 communities by analyzing sizes of the commu-
nities and select top 4 largest communities and return the set of top communities at time t as
Ctop

t .

Blockchain transactions are massive in numbers, so to get a grip on the transaction data to

33

34 Chapter 3. Concept and Design

detect communities and observe the evolution of communities, it is better to set up particular
properties like the number of communities to observe before starting to wrangle blockchain
transaction data. It also helps the system to detect better evolution on those top n communities
down the line. It reduces the number of edges in a graph that is not a part of a considerable
community and also discards the possibility of having self-links in evolution of the communi-
ties. Targeting top n communities also allows detecting communities in medium to high-end
systems depending on how many nodes and edges are being computed. A careful and strate-
gic approach to select the number of target communities can reduce the run-time and lower the
memory consumption.

Community structure has many different scenarios in a community life-cycle (1.4). For observ-
ing any kind of evolution there must be a reference point from where the calculation is being
drawn to observe how the communities have changed over time. If communities are being
detected in different time-stamps without a reference point or change point, there might be a
loss of critical information and the community evolution history might be lost. In practice, it
is necessary to know the previous state to understand what has changed in the current state.
In phase (ii)(a), to avoid loss of information and to preserve the community evolution history,
this framework creates a change point sub-graph from the original graph to be returned as a
sub-graph at time t. This particular sub-graph Gsubt contains all the nodes and edges that are
present in the top n communities from phase (i). This will help the framework to reduce the
number of nodes and edges being computed in the next phase without losing any information
for the target communities.

In phase (ii)(b), the framework will merge two snapshot and create a merged snapshot of the
graph. In this phase, the framework will merge the sub-graph Gsubt , from time t and the new
graph snapshot Gt+1 from time t + 1 resulting in a graph Gt,t+1, at this stage of the process only
the nodes and edges corresponding to the target communities are merged not all the nodes and
edges from time t.

Once the merge is complete, in phase (iii) the framework will apply the same algorithm from
phase (i) on graph Gt,t+1 at time t + 1 for detecting top n communities resulting in Ctop

t+1. This
way, the resulting community set will have the same number of communities as phase (i).

In phase (iv), the framework computes the relative overlap between two sets (Ctop
t and Ctop

t+1)
of communities each having n communities. Calculating the relative overlap gives the insight
of changes in the communities from time t to time t + 1. To calculate the relative overlap, a
process is described in [12] introduced by Palla et al. in 2007. The image of any community
in Ctop

t+1 at time t is the community of Ctop
t that has the largest relative overlap with it. Pall et

al. introduced that if two partitions Cx and Cy of a graph are similar, each cluster of Cx will
be very similar to one cluster pf Cy, and vice versa. It is very important to identify the pairs
of corresponding clusters. For instance, if the information about time evolution of a graph is
available, it is possible to monitor the dynamics of the single cluster by keeping track of each
cluster at different time stamps [12]. For cluster Cxi and Cyj , their similarity can be defined
through the relative overlap Sij

Sij =
|Cxi ∩ Cyj |
|Cxi ∪ Cyj |

(3.1)

3.1. Proposed Framework Architecture 35

For the scope of this thesis and for the proposed prototypical community observation frame
work, equation (3.1) (see also 2.35) can be modified as follows:

C(t) = |C(t) ∩ C(t + 1)|
|C(t) ∪ C(t + 1)| (3.2)

Time evolution of a community C can be described by the means of relative overlap C(t) be-
tween states of community separated by a single time step.

Each step of this framework has been discussed in details with reasoning in the next chapter
(4). Also the run-time complexity and memory consumption of this prototypical framework
has been put to test in the evaluation (4.2) section of this thesis.

4 Implementation and Evaluation
Taking into account the importance of community detection, it is not surprising that many com-
munity detection methods have been developed, using tools and techniques from variegated
disciplines such as statistical physics, biology, applied mathematics, computer science and so-
ciology [48]. All these methods aim at improving the identification of meaningful communities
while keeping as low as possible the computational complexity of the underlying algorithm.
Community detection algorithms can differ in two ways: not only the process leading to an
estimation of the community structure but also the nature of the estimated communities them-
selves [49].

This chapter will discuss the procedure of implementing of the proposed prototypical frame-
work (chapter 3) and also explore and evaluate the range and performance capabilities of the
framework in respect to computational complexity and memory space complexity on large-
scale networks. This chapter (4), aims to explore the computational complexities at run-time
for large-scale networks focusing on blockchain transaction network. At the end of this chap-
ter, an evaluation of the proposed prototypical framework’s observation technique is provided
based on blockchain network transaction data.

4.1 Implementation

To implement the concept of the framework designed in chapter (3), a certain amount of chal-
lenges like memory consumption of the hashed addresses, transaction amount is very big inte-
ger etc. were faced before the actual implementation could be done. For the scope of the thesis,
blockchain transaction data is being used to represent large-scale networks. Each blockchain
transaction data has many properties1 but for the interest of detecting communities and ob-
serving changes afterward, source account of the transaction, target account of the transaction,
amount transferred and the time-stamp, is considered in the data-set.
0x00f41ae83220a4953979fac1dca4433d27439fd0 is an example of a typical hashed ac-
count, a transferred amount looks similar to 2300958728094382741313 and a time stamp is
a regular UNIX based time-stamp. So for a single record in the data-set, there are two account
address, one transferred amount and a time-stamp.

Although every record is time-stamped, to detect community structures in blockchain network
the hashed accounts occupies much more memory (RAM) and it limits the power of the com-
munity detection algorithms in respect to memory requirement at run-time. Even in high-end
systems this affects the performance because the whole data-set is loaded into memory at once

1 Transaction hash, source account hash, transfer amount hash, target account hash, height of the block, age of the
block, transactions, contracts attached to the transaction etc.

37

38 Chapter 4. Implementation and Evaluation

for community detection. Another issue raised by the transferred amount, the amount works
as a weight of the link between source and target address. As the transferred amount is very
big integer, it is not feasible to use this as a weight.

As a preparation step of the proposed framework, All the hashed addresses in the entire data-
set has been mapped to numeric values. It significantly reduces the memory consumption at
run-time leading better performance of the algorithms and the framework as whole. As the
memory requirement is lower with numeric data-set, more records of data can be processed
with a medium or normal computer system2. The problem with a very large integer value for
the weight (amount) is solved by taking natural logarithm of the actual number and using it as
weight. The idea here is to keep a low weight value for the link between source address and
target address without compromising the actual importance of the link.

The implementation of the framework has four different steps done in two different time-
stamps. In both the time-stamp, community detection has been done with either infomap, lou-
vain or clauset-newman-moore algorithm. Framework currently supports these three widely
used algorithm for community detection. In section (4.2), all of these three community detec-
tion algorithm has been evaluated with blockchain data.

At the beginning of the implementation, top n communities are selected from the detected
communities. The selection of top n communities is based on the total number of nodes in
each community. The community has the highest number of nodes is the largest community.
Only the top n largest community is picked up as top n communities. Top n communities are
selected because it helps to focus on the communities that are really important. In blockchain
data, there could be a numerous number of small communities with a less number of nodes.
Picking up top communities removes the idea of picking a small community that has a little or
no effect on the entire graph representing a blockchain network.

Figure 4.1: Framework: step (i)

In step 2(a), A sub-graph of the data-set from time-stamp t is rendered according to the nodes
that are present in the top n communities from step one. The benefit of taking a sub-graph
that has been carefully selected from the nodes that are present in top n communities is that
only the data that is required to track these top n communities will be present in the sub-graph.
A blockchain data-set can carry huge amount of transaction records and trying to use all the
records every time can drastically change the behavior of the community detection algorithms
as well as the framework. If all the data is selected, the framework will try to calculate com-

2 Intel(R) Core(TM) i5-3320M CPU @ 2.60GHz and 16 GB of RAM, with 64 bit UNIX Operating System

4.1. Implementation 39

munities for nodes that is not in the target communities, resulting in longer run-time and not
to mention more memory consumption.

Figure 4.2: Framework: step (ii)(a)

In the next step, two snapshots, the sub-graph from 2(a) and a snapshot of data-set from time-
stamp t + 1 are merged to create a unified snapshot of data-set for the next step. The reason for
doing this is to prevent nodes from falling out from the data-set at time-stamp t + 1. Creating
a sub-graph from the data-set at time-stamp t helps to reduce the number of records in the
current (t + 1 snapshot), by adding all the nodes from time-stamp t helps to keep the previous
community structures intact so that with the current time-stamp, the change in the community
structures are visible.

Figure 4.3: Framework: step (ii)(b)

In step(iii), the framework repeats step one (i) on merged graph data-set to detect communities
and to find out top n communities from step 2(b) using the same algorithm that was used
in step one for the data-set in time-stamp t. But, the problem is that community can change

40 Chapter 4. Implementation and Evaluation

drastically over a time stamp in a network like blockchain data. As it’s known that blockchain
transactions are used for asset transfer, one node can just stop accepting or sending assets at
the next time stamp. So to observe the change in communities, finding the similar pair of
community in time-stamp t and t + 1 is important.

Figure 4.4: Framework: step (iii)

In the last step of the framework, similarity between community pairs are drawn by the means
of similarity measures described in section (2.3.5) of this thesis. Similarity measures identi-
fies the similar communities. If top n communities from time-stamp t doesn’t have a similar
community in top n communities of time-stamp t + 1, it indicates that the community from
time-stamp t has lost nodes and died or became small enough to fall out from top n communi-
ties. It also means that some community has been born in time-stamp t + 1

Figure 4.5: Framework: step (iv)

For the scope of the thesis, implementation of the proposed framework has been done with the
help of python programming language. Evaluation results are discussed in the next section
(4.2) in respect to run-time and memory consumption.

4.2. Evaluation 41

4.2 Evaluation

Over the years different methods have been published and claimed to be the fastest and ac-
curate. But for the scope of this thesis, three most popular and well-known algorithms are
chosen to test the range of capabilities on run-time complexities and memory requirement. The
obvious questions like why these particular algorithms? why not others? will be answered
sequentially later in this chapter.

4.2.1 Infomap

Infomap algorithm starts with encoding the network into modules in a way that maximizes
the amount of information about the original network. Then it sends the signal to a decoder
through a channel with limited capacity. The decoder tries to decode the message and to con-
struct a set of possible candidates for the original graph. The smaller the number of candidates,
the more information about the original network has been transferred [48]. This algorithm runs
in O(E), where E is the number of edges.

The main reason for choosing this algorithm for performance analysis in large-scale networks
is its run-time complexity. In [33], the authors stated that this algorithm works in a reason-
able amount of time for detecting communities in large-scale3 networks. Memory consump-
tion is also reasonable according to [33]. For the scope of this thesis, this algorithm’s perfor-
mance is being tested against blockchain transaction data to determine community structure in
blockchain transactions. To determine the memory usage and run-time of this algorithm in the
framework for detecting communities in blockchain data in a large network, sample data-sets
from Ethereum and Bitcoin transactions has been used. Data have been analyzed in the same
system4 the framework has been implemented.

Figure (4.6) (a) shows the run-time required for infomap to detect community structures. In (a)
we can observe that with the growth of the number of nodes the run-time grows but it takes
less than a minute to analyze and detect communities in 2.4 Million nodes. In terms of memory,
in Figure (b) for the same amount of nodes, it took only 5.1 GB of memory. In Figure, (c) and
(d), run-time and memory usage reflect in respect to the number of edges. As it is seen in these
figures, the run-time and memory consumption both go down on 3rd iteration because of the
data-set is more connected. In general, the nodes are more connected and have more links
between each other.

In terms of communities, Figure (e) and (f) show that it can detect a fair amount of communities
also. As the blockchain data doesn’t follow any pattern or network structure like social media
so the data is more sparse than expected. Yet, there are community structures in transaction
data. Infomap was able to detect communities in blockchain data-sets proving that community
structures exist in blockchain data.For the scope of the thesis, the main focus is to determine
run-time and memory usage for community detection algorithms in blockchain transaction
data. In respect to run-time and memory usage, infomap algorithm is quite faster and has a
reasonably low memory consumption.

3 A network with over 1, 000, 000 nodes/edges.
4 Intel(R) Core(TM) i5-3320M CPU @ 2.60GHz and 16 GB of RAM, with 64 bit UNIX Operating System

42 Chapter 4. Implementation and Evaluation

(a) (b)

(c) (d)

(e) (f)

Figure 4.6: Infomap algorithm: (a) Run-time against number of nodes (b) Memory usage against number
of nodes (c) Run-time against number of edges (d) Memory usage against number of edges
(e) Number of communities against number of nodes (f) Number of communities against
number of edges

4.2. Evaluation 43

4.2.2 Louvain

Louvain method (2.3.2) is a heuristic method that is based on modularity optimization (2.3.4). In
[27], Blondel et al. claimed that louvain method outperforms all other known community de-
tection algorithm in terms of computation time. Moreover, the quality of detected communities
is very good, as measured by modularity.

Louvain method is selected for performance analysis in the large-scale network because in [27],
the authors stated that it outperforms any other community detection algorithm in terms of
community detection. This algorithm runs in O(N logN), where n is the number of nodes. For
detecting community structures in large-scale blockchain networks, this algorithm can prove
to be useful in terms of computation time and memory consumption.

Figure (4.7) (a), shows the run-time required for detecting communities in large-scale network.
Figure (a) shows the run-time with respect to number of nodes. While the number of nodes
increases, the run-time increases too. In Figure (b), the memory usage has been shown in
respect to same number of nodes. Louvain method has detected communities in blockchain
transaction data in quite reasonable time and with a decent amount of memory usage. Louvian
method can detect communities in blockchain data with 2.4 Million nodes in about 700 seconds
and the memory usage is about 6.5 GB. In Figure (c) and (d), it shows the run-time and memory
consumption of louvain method in respect to number of edges. In 3rd iteration, the run-time
and memory usage is lower because the nodes are more closely connected in this graph.

For detected community structures, Figure (e) and (f) gives the number of detected communi-
ties in respect to number of nodes and number of edges. It is noticeable that, for over 1.4 million
edges the detected communities by Louvain method is nearly 300 only and this is because of
the previously explained issue that this particular graph’s nodes are more connected than the
other graphs. Louvain method is quite faster and reasonable in memory consumption but with
the growing number of nodes the run-time might get higher really quick.

44 Chapter 4. Implementation and Evaluation

(a) (b)

(c) (d)

(e) (f)

Figure 4.7: Louvain method algorithm: (a) run-time against number of nodes (b) memory usage against
number of nodes (c) run-time against number of edges (d) Memory usage against number
of edges (e) Number of communities against number of nodes (f) Number of communities
against number of edges

4.2. Evaluation 45

4.2.3 Fast Greedy(Clauset-Newman-Moore)

Grivan-Newman algorithm (2.2.3) was proposed by M. Girvan and E. J. Newman in 2002. It is
the first algorithm of the modern age of community detection in graphs [50]. It is a hierarchical
divisive algorithm in which links are iteratively removed based on the value of their between-
ness centrality (2.3.3), which expresses the number of shortest paths between a pair of nodes
that pass through the link. The entire algorithm runs in worst case time O(m2n).

The fast greedy algorithm developed by Girvan-Newman, updated by Clauset et al.is promis-
ing because in [18] authors stated that this algorithm is capable of detecting community struc-
tures in a reasonable time with lower memory consumption. This algorithm has a complexity
of O(N log2N) [50]. For this reason, this algorithm is a suitable candidate for performance
analysis on large-scale networks representing blockchain transactions.

In Figure (4.8) (a), represents the run-time of Clauset-Newman-Moore algorithm in respect
to number of nodes. In (b), it represents the memory usage of the algorithm with respect to
number of nodes. In Figure (c) and (d) it represents the run-time and memory consumption
in respect to number of edges. Notice that the number of maximum nodes is nearly 12000
and highest number of edges is 1.1 million. With the system described above it took nearly
500 seconds of run-time and 300 MB of memory to detect community structures in blockchain
data. But beyond this nodes and edges, if the number of nodes and edges increases the run-
time and memory usage increases rapidly and it takes more than 24 hours to detect community
structures in a larger network graph.

In Figure (e) and (f), detected communities are shown against number of nodes and number of
edges receptively. From these simulations of run-time and memory usage, it’s clear that this
algorithm best works with a network with small to medium networks and can detect communi-
ties in short time with low memory consumption but if the network size increases the run-time
and memory consumption increases.

46 Chapter 4. Implementation and Evaluation

(a) (b)

(c) (d)

(e) (f)

Figure 4.8: Clauset-Newman-Moore algorithm: (a) run-time against number of nodes (b) memory usage
against number of nodes (c) run-time against number of edges (d) Memory usage against
number of edges (e) Number of communities against number of nodes (f) Number of com-
munities against number of edges

4.3. Algorithm Comparison 47

4.3 Algorithm Comparison

In (4.2), the algorithms and their performance on detecting community structure are discussed
with the help of blockchain data. Clauset-Newman-Moore algorithm could not deliver on the
run-time and memory consumption for blockchain data as expected. On the other hand, In-
fomap algorithm and Louvain method algorithm seems promising for detecting community
structures in blockchain transactions. So in this section, Clauset-Newman-Moore algorithm
has been excluded from the comparison.

Although both the algorithms (Infomap and Louvain method) had been discussed in details, in
this section a comparison of run-time and memory consumption is drawn to better understand
these two algorithms’ performance on blockchain data-sets.

(a) (b)

(c)

Figure 4.9: Algorithm comparison: (a) run-time against number of nodes (b) Memory usage against
number of nodes (c) Detected communities against number of nodes

Figure (4.9) (a), shows the run-time for both Infomap and Louvain method algorithm in respect
to same amount of nodes from blockchain data-set. The same data set has been used to measure

48 Chapter 4. Implementation and Evaluation

the run-time in both algorithms. In (a), Infomap algorithm runs in less than a minute for 2.4
million nodes where Louvain method runs in a little over 11 minutes. In (b), Infomap algorithm
costs 5.1 GB of RAM for 2.4 million nodes where Louvain method costs 6.4 GB for the same
amount of nodes from the same blockchain data-set.

Figure (4.9) (c), shows the number of communities detected by Infomap and Louvain method
algorithm from the same blockchain data-sets. Figure (c) reveals that although the first itera-
tion of community detection gives two very different sets of results, both the algorithm detects
nearly the same number of communities while the number of nodes keeps increasing. Perfor-
mance of both algorithms will increase with the increase of processing power and memory of
the system used to run the algorithms.

4.4 Evaluation of Observation Framework

The proposed observation framework used blockchain data with different algorithms and its
performance has been evaluated so far for the detection of communities. In chapter (3) sec-
tion (3.1) the framework creates sub-graph of the previous graph’s snapshot and merges all the
nodes and edges with the current snapshot of data only if the node is present in top n com-
munities in the first graph snapshot. So after the merge, communities are detected and top
n communities are selected from the current (t+1) time-stamp data. A similarity measure de-
scribed in chapter (2) is used to find the most similar community pairs to observe the changes
in the community.

In Figure (4.10)(a) shows a single community structure from the Ethereum data of July, 2017
detected by the prototypical framework. This figure represent a single cluster of nodes that
has been detect by the proposed framework. From the figure, it is observable that two nodes
play very vital role in this community. Although, the community detection algorithm detected
all the nodes as one community, the figure is showing different clusters because of the layout
algorithm used to visualize the underlying data.

Figure (4.10)(b) represents the community from (a) in the next time-stamp, in this case, the same
community from next month (August, 2017). Figure (b) show the changes that happened to the
previous community time interval of (t+1-t)= 1, time-stamp. It is observable that, community
structure has changed in this time-stamp. The same nodes from previous time stamp was
involved in more Ethereum transactions and that lead the network to create current community
structure at time-stamp t + 1.

Like figure (a) and (b), it’s noticeable that figure (c), (d) and (e), (f) shows the same properties
of gaining more transactions and as result the community grew in size in each case. In Figure
(4.10), each pair of figures represents a community in two different time-stamp and it’s visible
from the figures that all the pairs shows that the community is growing. This phenomenon is
observed because of the popularity of ethereum blockchain cryptocurrency. Community could
lose nodes, split into two and get merged with another community as described in section (2.4).
The figures shown in this section of the thesis are only a visualization of a few communities at
two different time-stamps. With the help of proposed prototypical framework it’s possible to
detect and observe communities as they evolve over time.

4.4. Evaluation of Observation Framework 49

(a) snapshot at time t (b) snapshot at time t + 1

(c) snapshot at time t (d) snapshot at time t + 1

(e) snapshot at time t (f) snapshot at time t + 1

Figure 4.10: Community evolution

5 Conclusion
This thesis analyzed large-scale network (blockchain) data and built a prototypical framework
for community detection and observation for blockchain transaction network. State of the art
community detection techniques and their underlying algorithms have been discussed in de-
tails at the beginning of the thesis. A handful of algorithms were discussed in details from a
vast number of community detection techniques for the scope of this thesis.

This thesis proposed and implemented a prototypical framework that can detect communi-
ties in blockchain transactions and observe changes afterward. This task was focused on two
factors:

• run-time

• memory consumption

For any large-scale network data-set, it is obvious to find an optimized way to detect and
track communities in blockchain data. So, the primary goal of the thesis revolved around
the question - "How well an algorithm performs on large scale graph?". Secondary goal was
to implement the proposed prototypical framework for observing changes in community de-
tection. The proposed framework is implemented and evaluated in respect to run-time and
memory consumption as well as detecting changes in detected communities at different time-
stamps. The framework touches all the main objectives of this thesis from analyzing state
of the art community detection techniques for large-scale networks, designing a prototypical
framework to detect and observe changes in community to implementing and evaluating the
framework.

Further study can be carried out on how to minimize the run-time even further for this frame-
work. Determining the number of target communities will help reduce the time significantly.
Proposed framework is a prototype that proves, it’s possible to detect communities in blockchain
data despite the anonymity of the transactions. It’s possible to track communities and if neces-
sary, a particular node’s effect in the transaction network.

Blockchain gained popularity over the years and with it, the number of transaction also grew.
It’s a real challenge to process and analyze this huge data-set for community detection and
observation. This framework is designed and implemented with the help of a medium capacity
system1. Adding more feature modules to the framework is also possible and can help provide
desired output depending on user’s need. Framework can be further improved using a high-
end system, parallel processing or distributed computing can reduce the speed and memory
consumption drastically, which will help to process more nodes at any given time-stamp.

1 Intel(R) Core(TM) i5-3320M CPU @ 2.60GHz and 16 GB of RAM, with 64 bit UNIX Operating System

51

List of Tables
2.1 An example of betweenness centrality measure calculated from Figure (2.2) . . . 23

53

List of Figures
1.1 A graph with three communities, enclosed by dashed circles 3
1.2 Community structures in different networks: (a) Famous Zachary’s Karate club

community structures. (b) Network of bottle nose dolphins (c) Community struc-
tures found in autonomous systems interaction with each other in CAIDA project
in 2007 . 4

1.3 Blockchain explained . 6
1.4 Possible scenarios of community evolution [12] . 8

2.1 Example of assignment of normalized degrees and initial edge weights [34]. . . . 18
2.2 A simple undirected network . 23
2.3 An example of edge betweenness . 28
2.4 A dendrogram with twelve nodes from the graph in Figure (2.3) 28

4.1 Framework: step (i) . 38
4.2 Framework: step (ii)(a) . 39
4.3 Framework: step (ii)(b) . 39
4.4 Framework: step (iii) . 40
4.5 Framework: step (iv) . 40
4.6 Infomap algorithm: (a) Run-time against number of nodes (b) Memory usage

against number of nodes (c) Run-time against number of edges (d) Memory
usage against number of edges (e) Number of communities against number of
nodes (f) Number of communities against number of edges 42

4.7 Louvain method algorithm: (a) run-time against number of nodes (b) memory
usage against number of nodes (c) run-time against number of edges (d) Memory
usage against number of edges (e) Number of communities against number of
nodes (f) Number of communities against number of edges 44

4.8 Clauset-Newman-Moore algorithm: (a) run-time against number of nodes (b)
memory usage against number of nodes (c) run-time against number of edges
(d) Memory usage against number of edges (e) Number of communities against
number of nodes (f) Number of communities against number of edges 46

4.9 Algorithm comparison: (a) run-time against number of nodes (b) Memory usage
against number of nodes (c) Detected communities against number of nodes . . . 47

4.10 Community evolution . 49

55

Bibliography
[1] M. Grivan and M. E. J. Newman. “Community structure in social and biological networks”. In:

Proc. Natl. Acad. Sci. USA 99.12 (2002), pp. 7821–7826. DOI: 10.1073/pnas.122653799.

[2] S. Battiston et al. “The structure of financial networks”. In: Springer London 44.8 (2010), pp. 131–
163. DOI: http://link.springer.com/10.1007/978-1-84996-396-1_7.

[3] H. Wang et al. “Active Community Detection in Massive Graphs”. In: SDM-Networks 2015 1.1
(2015), pp. 1–8.

[4] Santo Fortunato. “Community detection in graphs”. In: Physics Reports 486.3–5 (2010), pp. 75–
174. DOI: 10.1016/j.physrep.2009.11.002.

[5] P. Erdös and A. Rényi. “On random graphs. I.” In: Publ. Math. Debrecen 6 (1959), pp. 290–297.

[6] Y. Dourisboure, F. Geraci, and M. Pellegrini. “Extraction and classification of dense commu-
nities in the web”. In: WWW’07:Proceeding of the 16th International conference on the World Wide
Web, ACM, NY, USA (2007), pp. 461–470.

[7] K.P. Reddy et al. “A graph based approach to extract a neighborhood customer community for
collaborative filtering”. In: DNIS’02: Proceeding of the Second International Workshop on Databases
in Networked Information Systems, Springer-Verlag, London, UK (2002), pp. 188–200.

[8] W. W. Zachary. “An information flow model for conflict and fission in small groups”. In: J.
anthropol. Res. 33.1 (1977), pp. 452–473.

[9] M. Boss et al. “Network topology of the interbank market”. In: Quant. Finance 4 (2004), pp. 677–
684.

[10] J. Yli-Huumo et al. “Where Is Current Research on Blockchain Technology?—A Systematic
Review”. In: PLoS ONE 11.10 (2016), pp. 1–27. DOI: https://doi.org/10.1371/journal.
pone.0163477.

[11] C. G. Akcora, Y. R. Gel, and M. Kantarcioglu. “Blockchain: A Graph Primer”. In: 1.1 (2017),
pp. 1–16. DOI: https://blog.blockonomics.co/blockchain-a-graph-primer-
6872e8ce9f1b.

[12] G. Palla, A. L. Barabasi, and T. Vicsek. “Quantifying social group evolution”. In: Nature 446
(2007), pp. 664–667.

[13] P. D. Meo et al. “Generalized Louvain method for community detection in large networks”. In:
11th International Conference on Intelligent Systems Design and Applications (2011), pp. 88–93.

[14] M. A. Porter, J. -P. Onnela, and P. J. Mucha. “Communities in Networks”. In: North Amer. Math.
Soc. 56 (2009), pp. 1082–1097, 1164–1166.

[15] S. Wasserman and K. Faust. “Social Network Analysis”. In: Cambridge University Press, Cam-
bridge, UK (1994).

57

https://doi.org/10.1073/pnas.122653799
https://doi.org/http://link.springer.com/10.1007/978-1-84996-396-1_7
https://doi.org/10.1016/j.physrep.2009.11.002
https://doi.org/https://doi.org/10.1371/journal.pone.0163477
https://doi.org/https://doi.org/10.1371/journal.pone.0163477
https://doi.org/https://blog.blockonomics.co/blockchain-a-graph-primer-6872e8ce9f1b
https://doi.org/https://blog.blockonomics.co/blockchain-a-graph-primer-6872e8ce9f1b

58 Chapter 5. Bibliography

[16] A. Ng, M. Jordan, and Y. Weiss. “On Spectral Clustering: Analysis and an algorithm”. In: Ad-
vances in Neural Information Processing Systems 14 (2001).

[17] U. Brandes et al. “On finding graph clusterings with maximum modularity”. In: Graph-Theoretic
Concepts in Computer Science (2007), pp. 121–132.

[18] A. Clauset, M. Newman, and C. Moore. “Finding community structure in very large networks”.
In: Physical Review E 70.6 (2004), pp. 66–111. DOI: 10.1103/PhysRevE.70.066111.

[19] J. Duch and A. Arenas. “Community detection in complex networks using external optimiza-
tion”. In: Physical Review E 72.2 (2005), pp. 27–104.

[20] M. Newman and E. Leicht. “Mixture models and exploratory analysis in networks”. In: PNAS
104.23 (2007), p. 9654.

[21] M. Newman. “Finding community structure in networks using the eigenvectors of matrices”.
In: Physical Review E 74.3 (2006), pp. 36–104.

[22] S. P. Borgatti et al. “Network Analysis in the Social Sciences”. In: Sciencemag 323 (2009), pp. 892–
895.

[23] Ludvig Bohlin et al. “Community detection and visualization of networks with the map equa-
tion framework”. In: Integrated Science Lab, Department of Physics, Umeå University, SE-901 87
Umeå, Sweden 1 (2014), pp. 1–19.

[24] Martin Rosvall, Daniel Axelsson, and Carl T. Bergstrom. “The map equation”. In: Eur. Phys. J.
Special Topics 178.13 (2009), pp. 13–23.

[25] DAVID A. HUFFMAN. “A Method for the Construction of Minimum-Redundancy Codes”. In:
Proceeding of the I.R.E. 40 (1952), pp. 1098–1101.

[26] L. Lovasz. “Random walks on graph: A survey”. In: Bolyai Society Mathematical Studies 2.1
(1993), pp. 1–46.

[27] V. Blondel et al. “Fast unfolding of communities in large networks”. In: Journal of Statistical
Mechanics: Theory and Experiment P1008 (2008). DOI: https://arxiv.org/pdf/0803.
0476.pdf.

[28] J. Kleinberg. “An impossibility theorem for clustering: Advances in NIPS 15”. In: MIT Press,
Boston, USA (2002), pp. 446–453.

[29] M. Tumminello, F. Lillo, and R. N. Mantegna. “Correlation, hierarchies and networks in finan-
cial markets”. In: eprint arXiv 0809.4615 ().

[30] Martin Rosvall et al. “Memory in network flows and its effects on spreading dynamics and
community detection”. In: Nature Communications 5.4630 (2014), pp. 1–27.

[31] Fang Hu and Yuhua Liu. “A novel algorithm Infomap-SA of Detecting Communities in com-
plex network”. In: Journal Of Communications 10.7 (2015), pp. 503–511.

[32] C. E. Shannon. “A Mathematical Theory of Communication”. In: The Bell System Technical Jour-
nal 27.3 (1948), pp. 379–423, 623–656.

[33] http://www.mapequation.org. The Map Equation. URL: http://www.mapequation.org/
code.html.

[34] E. Ferrara et al. “A novel measure of edge centrality in social networks”. In: Knowledge Based
Systems (2008).

https://doi.org/10.1103/PhysRevE.70.066111
https://doi.org/https://arxiv.org/pdf/0803.0476.pdf
https://doi.org/https://arxiv.org/pdf/0803.0476.pdf
http://www.mapequation.org/code.html
http://www.mapequation.org/code.html

59

[35] L. C. Freeman. “A Set of measures of centrality based on betweenness”. In: Sociometry 40 (1977),
pp. 35–41.

[36] M. E. J. Newman and M. Girvan. “Finding and Evaluating community structure in networks”.
In: Phys. Rev. E 69.2 (2004).

[37] P. Ruppel. “Digital Communities”. In: TU Berlin - Lecture notes on network analysis 1.4 (2017),
pp. 93–94. DOI: http://snet.tu-berlin.de.

[38] M. E. J. Newman. “Fast Algorithm for detecting community structure in networks”. In: Phys.
Rev. 69.6 (2004). DOI: 10.1103/PhysRevE.69.066133.

[39] Remco van der Hofstad. Random graphs and complex networks, p. 149.

[40] U. Brandes et al. “On modularity - np completeness and beyond”. In: URL http://digbib.ubka.uni-
karlshure.de/volltexte/documents/3255 (). DOI: http://digbib.ubka.uni-karlshure.de/
volltexte/documents/3255.

[41] R. S. Burt. “Position in Networks”. In: Soc. Forcess 55 (1976), pp. 93–122.

[42] F. Lorrain and H. White. “Structural equivalence of individuals in social networks”. In: J. Math.
Sociol. 1 (1971), pp. 49–80.

[43] J. Hopcroft et al. “Tracking evolving communities in large linked networks”. In: Proc. Natl.
Acad. Sci. USA 101.1 (2004), pp. 5249–5253. DOI: 10.1073/pnas.0307750100.

[44] J. Sun et al. “Graphscope: Parameter-free mining of large time-evolving graphs”. In: KDD ’07:
Proceeding of the 13th ACM SIGKDD International conference on Knowledge Discovery and Data
Mining, ACM, Newyork, USA 1.1 (2007), pp. 687–696. DOI: 10.1145/1281192.1281266.

[45] P. D. Grunwald, I. J. Myung, and M. A. Pitt. Advances in Minimum Description Length: Theory and
Applications. MIT Press, Cambridge, USA, 2005.

[46] D. J. Fenn et al. “Dynamic communities in multichannel data: An application to the foreign
exchange market during the 2007-2008 credit crisis”. In: 19.3 (2009), p. 033119.

[47] R. Guimera and L. A. N. Amaral. “Functional cartography of complex metabolic networks”.
In: Nature 433.03288 (2005), pp. 895–900. DOI: 10.1038/nature03288.

[48] Zhao Yang, Rene Algesheimer, and Claudio J. Tessone. “A comparative Analysis of Commu-
nity Detection Algorithms on Artificial Networks”. In: Scientific Reports 6.30750 (2016), pp. 1–
16. DOI: 10.1038/srep30750.

[49] Gunce Orman, Vincent Labatut, and Hocine Cherifi. “Comparative Evaluation of Community
Detection Algorithms: A Topological Approach”. In: Journal of Statistical Mechanics: Theory and
Experiment, IOP SCience 08.1 (2012), pp. 1–16. DOI: 10.1088/1742-5468/2012/08/P08001.

[50] Andrea Lancichinetti and Santo Fortunato. “Community Detection algorithms: A compara-
tive analysis”. In: Physical Review 80.056117 (2009), pp. 1–11. DOI: 10.1103/PhysRevE.80.
056117.

https://doi.org/http://snet.tu-berlin.de
https://doi.org/10.1103/PhysRevE.69.066133
https://doi.org/http://digbib.ubka.uni-karlshure.de/volltexte/documents/3255
https://doi.org/http://digbib.ubka.uni-karlshure.de/volltexte/documents/3255
https://doi.org/10.1073/pnas.0307750100
https://doi.org/10.1145/1281192.1281266
https://doi.org/10.1038/nature03288
https://doi.org/10.1038/srep30750
https://doi.org/10.1088/1742-5468/2012/08/P08001
https://doi.org/10.1103/PhysRevE.80.056117
https://doi.org/10.1103/PhysRevE.80.056117

	Introduction
	Objectives
	What is a community in graph?
	Structure of Transaction-based Networks
	Transaction Networks

	Distributed Ledger / Blockchain
	Why Blockchain?

	Community Detection in Transaction-based Networks
	Detection of Dynamic Community

	Related Work
	Problems of community detection
	Literature Review
	Infomap
	Louvain Method
	Girvan-Newman Algorithm
	Modularity Maximization (Quality Function)

	Background
	Infomap Algorithms
	Louvain Method Algorithm Structure
	Girvan-Newman Algorithm Architecture
	Modularity Maximization Technique
	Hierarchical Clustering

	Dynamic Community Detection Algorithms

	Concept and Design
	Proposed Framework Architecture

	Implementation and Evaluation
	Implementation
	Evaluation
	Infomap
	Louvain
	Fast Greedy(Clauset-Newman-Moore)

	Algorithm Comparison
	Evaluation of Observation Framework

	Conclusion
	List of Tables
	List of Figures
	Bibliography

